Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enric Saiz is active.

Publication


Featured researches published by Enric Saiz.


Environmental Toxicology and Chemistry | 2005

Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae

Carlos Barata; Albert Calbet; Enric Saiz; Laura Ortiz; Josep M. Bayona

In the present study, the acute toxicity of 10 polycyclic aromatic hydrocarbons (PAHs) associated with the Prestige fuel oil spill (Spain, 2002) were evaluated, either as single substances or in mixtures, in adults of the copepod Oithona davisae. All but dimethylphenanthrene had negative effects on O. davisae survival at concentrations below their water solubility, with 48-h median lethal concentrations for naphthalene and pyrene of 56.1 and 0.8 micromol/L, respectively, making these the least and most toxic compounds. Polycyclic aromatic hydrocarbons had narcotic effects on copepods, as evidenced by the lack of motility at lower concentrations than those causing death. Naphthalene showed the greatest narcotic effects, and phenanthrene showed minor effects. Acute toxicity of the tested PAHs was inversely related (r2 = 0.9) with their octanol-water partition coefficient, thereby confirming the validity of the baseline quantitative structure-activity regression models for predicting the toxicity of PAH compounds in copepod species. When supplied in mixtures, the toxic effect of PAHs was additive. These results indicate that the many PAHs in an oil spill can be considered unambiguous baseline toxicants (class 1) acting additively as nonpolar narcotics in copepods; hence, their individual and combined toxicity can be predicted using their octanol-water partition coefficient.


Hydrobiologia | 2011

Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations

Enric Saiz; Albert Calbet

Here, we report insights from the compilation and analysis of data on marine calanoid copepod feeding rates in the ocean. Our study shows that food availability and body weight are major factors shaping copepod feeding rates in the field, with a relatively minor role of temperature. Although the maximal feeding rates of copepods that are observed in the field agree with the well-known 3/4 of body size scaling rule for animals, copepod feeding in the oceans is typically limited and departs from this rule. Ciliates and dinoflagellates appear to be highly relevant in the composition of copepod diets, and this represents an indirect increase in the flux of primary production that is likely to reach the upper trophic levels; this contribution is higher in the less productive systems and may help to explain accounts of proportionally higher standing stocks of copepods supported per unit of primary producer biomass in oligotrophic environments. Contrary to common belief, diatoms emerge from our dataset as small contributors to the diet of copepods, except in some very productive ecosystems. We have also evaluated the bias in the estimation of copepod grazing rates due to within-bottle trophic cascade effects caused by the removal of microheterotrophs by copepods. This release of microzooplankton grazing pressure accounts for a relevant, but moderate, increase in copepod grazing estimates (ca. 20–30%); this bias has an effect on both the carbon flux budgets through copepods and on our view of their diet composition. However, caution is recommended against the indiscriminate use of corrections because they may turn out to be overestimates of the bias. We advise that both uncorrected and corrected grazing rates should be provided in future studies, as they probably correspond to the lower and upper boundaries of the true grazing rates.


Environmental Pollution | 2009

Lethal and sublethal effects of naphthalene and 1,2-dimethylnaphthalene on naupliar and adult stages of the marine cyclopoid copepod Oithona davisae

Enric Saiz; Juancho Movilla; Lidia Yebra; Carlos Barata; Albert Calbet

Short-term (24h) exposure experiments have been conducted to determine the effects of two environmental relevant polycyclic aromatic hydrocarbons (PAHs), naphthalene (NAPH) and dimethylnaphthalene (C2-NAPH), on the naupliar and adult stages of the marine cyclopoid copepod Oithona davisae. To resemble more realistic conditions, those exposure experiments were conducted under the presence of food. The naupliar stages evidenced lower tolerance to PAH exposure regarding narcotic and lethal effects than adults. Copepod feeding activity showed to be very sensitive to the presence of the studied PAHs, detrimental effects occurring at toxic concentrations ca. 2-3 fold lower than for narcotic effects. In addition we report PAH-mediated changes in cell size and growth rate of the prey item, the heterotrophic dinoflagellate Oxyrrhis marina, that could indirectly affect copepod feeding and help explain hormesis-like responses in our feeding experiments.


Marine Biology | 1994

Excretion of ammonia by zooplankton and its potential contribution to nitrogen requirements for primary production in the Catalan Sea (NW Mediterranean)

Miquel Alcaraz; Enric Saiz; Marta Estrada

Excretion of ammonia by mesozooplankton (>200 μm zooplankton) and its potential contribution to the nitrogen requirement for phytoplankton growth has been estimated for different hydrographical situations along a transect across the Catalan Sea (Northwestern Mediterranean). The nitrogen excreted as ammonia was estimated from mesozooplankton biomass and specific excretion rates. Nitrogen requirements of phytoplankton were estimated by means of carbon fixation rates and C:N ratios of <200 μm particulate organic matter. Minimum C:N ratios and maximum primary production, zooplankton biomass, phytoplankton nitrogen requirements, and nitrogen excretion of zooplankton occurred near the Catalan density front. On average, the nitrogen regenerated by the mesozooplankton accounted for 43% of the nitrogen requirements of the phytoplankton. The specific excretion rates of ammonia and the percentage of phytoplanktonnitrogen requirements supplied by excreted nitrogen were higher at coastal stations. In some coastal and frontal stations, the ammonia excreted exceeded the phytoplanktonnitrogen demand. Bacteria competing for nutrient supply and the possible uncoupling between rate processes and standing stocks of phyto- and zooplankton could explain the apparent excess of regenerated ammonia.


Polar Biology | 2010

The role of arctic zooplankton in biogeochemical cycles: respiration and excretion of ammonia and phosphate during summer

Miquel Alcaraz; Rodrigo Almeda; Albert Calbet; Enric Saiz; Carlos M. Duarte; Sebastien Lasternas; Susana Agustí; Reyes de Santiago; Juan Ignacio Movilla; A. Alonso

The study of the structural and functional properties of key components of polar marine ecosystems has received increased attention in order to better understand the ecological consequences of future sea temperature rise and seasonal ice retraction. Owing to this purpose, during the ATOS-Arctic cruise, held in July 2007 in the framework of the 2007–2008 International Polar Year, we studied the respiratory carbon demand of mesozooplankton as well as their contribution to the regeneration of inorganic nitrogen and phosphorus (NH4-N and PO4-P) via excretion. The studied area comprised several stations along a latitudinal gradient in the East Greenland current, plus a network of stations NW of the Svalbard islands. The specific respiratory carbon losses and phosphorus (PO4-P) excretion rates were similar or slightly higher than some reports for Arctic mesozooplankton, but the nitrogen (NH4-N) excretion rates were higher by a factor of 3 when compared with previous data sets. The mesozooplankton respiratory losses were equivalent to 23% of primary production, and at turn zooplankton contributed by excretion to more than 50% of the N and P required by phytoplankton. Although C:N, C:P and N:P metabolic atomic quotients almost coincided with the average Redfield’s stoichiometric ratios, the low C:N values when compared to previous reports suggested a predominance of protein-related metabolic substrates. The potential consequences of changes observed in the C:N, N:P and C:P metabolic ratios of mesozooplankton for Arctic marine ecosystems are discussed.


Journal of Phycology | 2007

PARASITIC SPECIES OF THE GENUS BLASTODINIUM (BLASTODINIPHYCEAE) ARE PERIDINIOID DINOFLAGELLATES1

Alf Skovgaard; Ramon Massana; Enric Saiz

The taxonomic position of Blastodinium navicula Chatton and B. contortum Chatton, parasites of marine copepods, was investigated on the basis of morphological observations and molecular data. The life cycle of Blastodinium includes a parasitic stage, a trophont, and free‐swimming dinospores. The individual cells in the trophont, as well as the dinospores that they produced, were thecate. Dinospores of B. contortum and B. navicula had peridinioid plate tabulation formula, demonstrating an affiliation to the order Peridiniales Heackel (subdivision Dinokaryota Fensome et al.). This systematic position is in contrast to current classifications, in which the order Blastodiniales Chatton is thought to represent an early evolutionary branch of the dinokaryote lineage. Small‐subunit rRNA gene sequences were generated from six Blastodinium individuals isolated from three different host species. In phylogenetic analyses based on SSU rRNA genes, Blastodinium spp. branched with the typical dinoflagellates. Even though overall statistical support was low, the analyses suggested that Blastodinium spp. are late‐branching, dinokaryote dinoflagellates. Species currently included in Blastodiniales are all parasites, but they are morphologically and functionally diverse. Emerging molecular data also reveal high genetic diversity, and therefore, the taxonomy of the group requires reevaluation.


PLOS ONE | 2013

Copepod Foraging on the Basis of Food Nutritional Quality: Can Copepods Really Choose?

Stamatina Isari; Meritxell Antό; Enric Saiz

Copepods have been considered capable of selective feeding based on several factors (i.e., prey size, toxicity, and motility). However, their selective feeding behaviour as a function of food quality remains poorly understood, despite the potential impact of such a process on copepod fitness and trophodynamics. In this study, we aimed to evaluate the ability of copepods to feed selectively according to the nutritional value of the prey. We investigated the feeding performance of the calanoid copepod Acartia grani under nutritionally distinct diets of the dinoflagellate Heterocapsa sp. (nutrient-replete, N-depleted and P-depleted) using unialgal suspensions and mixtures of prey (nutrient-replete vs. nutrient-depleted). Despite the distinct cell elemental composition among algal treatments (e.g., C:N:P molar ratios) and the clear dietary impact on egg production rates (generally higher number of eggs under a nutrient-replete diet), no impact on copepod feeding rates was observed. All unialgal suspensions were cleared at similar rates, and this pattern was independent of food concentration. When the prey were offered as mixtures, we did not detect selective behaviour in either the N-limitation (nutrient-replete vs. N-depleted Heterocapsa cells) or P-limitation (nutrient-replete vs. P-depleted Heterocapsa cells) experiments. The lack of selectivity observed in the current study contrasts with previous observations, in which stronger nutritional differences were tested. Under normal natural circumstances, nutritional differences in natural prey assemblages might not be sufficiently strong to trigger a selective response in copepods based on that factor alone. In addition, our results suggest that nutritional quality might depend not only on the growing conditions but also on the inherent taxonomical properties of the prey.


Scientific Reports | 2015

Born small, die young: Intrinsic, size-selective mortality in marine larval fish

Susana Garrido; Radhouane Ben-Hamadou; Amp Santos; S. Ferreira; Maria Alexandra Teodósio; Unai Cotano; Xabier Irigoien; Myron A. Peck; Enric Saiz; Pedro Ré

Mortality during the early stages is a major cause of the natural variations in the size and recruitment strength of marine fish populations. In this study, the relation between the size-at-hatch and early survival was assessed using laboratory experiments and on field-caught larvae of the European sardine (Sardina pilchardus). Larval size-at-hatch was not related to the egg size but was significantly, positively related to the diameter of the otolith-at-hatch. Otolith diameter-at-hatch was also significantly correlated with survival-at-age in fed and unfed larvae in the laboratory. For sardine larvae collected in the Bay of Biscay during the spring of 2008, otolith radius-at-hatch was also significantly related to viability. Larval mortality has frequently been related to adverse environmental conditions and intrinsic factors affecting feeding ability and vulnerability to predators. Our study offers evidence indicating that a significant portion of fish mortality occurs during the endogenous (yolk) and mixed (yolk /prey) feeding period in the absence of predators, revealing that marine fish with high fecundity, such as small pelagics, can spawn a relatively large amount of eggs resulting in small larvae with no chances to survive. Our findings help to better understand the mass mortalities occurring at early stages of marine fish.


Scientific Reports | 2015

Ageing and Caloric Restriction in a Marine Planktonic Copepod

Enric Saiz; Albert Calbet; Kaiene Griffell; José Guilherme F. Bersano; Stamatina Isari; Montserrat Solé; Janna Peters; Miquel Alcaraz

Planktonic copepods are a key group in the marine pelagic ecosystem, linking primary production with upper trophic levels. Their abundance and population dynamics are constrained by the life history tradeoffs associated with resource availability, reproduction and predation pressure. The tradeoffs associated with the ageing process and its underlying biological mechanisms are, however, poorly known. Our study shows that ageing in copepods involves a deterioration of their vital rates and a rise in mortality associated with an increase in oxidative damage (lipid peroxidation); the activity of the cell-repair enzymatic machinery also increases with age. This increase in oxidative damage is associated with an increase in the relative content of the fatty acid 22:6(n-3), an essential component of cell membranes that increases their susceptibility to peroxidation. Moreover, we show that caloric (food) restriction in marine copepods reduces their age-specific mortality rates, and extends the lifespan of females and their reproductive period. Given the overall low production of the oceans, this can be a strategy, at least in certain copepod species, to enhance their chances to reproduce in a nutritionally dilute, temporally and spatially patchy environment.


PLOS ONE | 2017

Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey

Laura Kristiina Helenius; Enric Saiz

Laboratory feeding experiments were conducted to study the functional response and prey size spectrum of the young naupliar stages of the calanoid copepod Paracartia grani Sars. Experiments were conducted on a range of microalgal prey of varying sizes and motility patterns. Significant feeding was found in all prey of a size range of 4.5–19.8 μm, with Holling type III functional responses observed for most prey types. The highest clearance rates occurred when nauplii fed on the dinoflagellate Heterocapsa sp. and the diatom Thalassiosira weissflogii (respectively, 0.61 and 0.70 mL ind-1 d-1), suggesting an optimal prey:predator ratio of 0.09. Additional experiments were conducted to examine the effects of the presence of alternative prey (either Heterocapsa sp. or Gymnodinium litoralis) on the functional response to the haptophyte Isochrysis galbana. In the bialgal mixtures, clearance and ingestion rates of I. galbana along the range of the functional response were significantly reduced as a result of selectivity towards the larger, alternative prey. Paradoxically, relatively large prey trigger a perception response in the nauplii, but most likely such prey cannot be completely ingested and a certain degree of sloppy feeding may occur. Our results are further evidence of the complex prey-specific feeding interactions that are likely to occur in natural assemblages with several available prey types.

Collaboration


Dive into the Enric Saiz's collaboration.

Top Co-Authors

Avatar

Albert Calbet

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miquel Alcaraz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Stamatina Isari

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Isabel Trepat

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Almeda

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Thomas Kiørboe

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dacha Atienza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Torkel Gissel Nielsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge