Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Cupo is active.

Publication


Featured researches published by Albert Cupo.


Science | 2013

Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer

Jean-Philippe Julien; Albert Cupo; Devin Sok; Robyn L. Stanfield; Dmitry Lyumkis; Marc C. Deller; Per Johan Klasse; Dennis R. Burton; Rogier W. Sanders; John P. Moore; Andrew B. Ward; Ian A. Wilson

Knowing the Enemy Infection of host cells by HIV-1 is mediated by an envelope glycoprotein (Env) trimeric spike on the surface of the virus. Proteins comprising the Env trimer must be cleaved for infectivity, and thus viral fusion involves three Env conformations. The flexibility of the Env trimer has made it a challenge to determine a high-resolution structure, although such a structure is key both for understanding trimer function and for guiding vaccine design. Lyumkis et al. (p. 1484) and Julien et al. (p. 1477) studied soluble cleaved trimers stabilized by specific mutations but that have kept a near-native antigenicity profile. Lyumkis et al. present a high-resolution structure of the trimer in complex with a broadly neutralizing antibody, and Julien et al. present a crystal structure of the trimer in complex with another broadly neutralizing antibody. Key structural features dictate how the HIV envelope protein functions and interacts with the human immune system. HIV-1 entry into CD4+ target cells is mediated by cleaved envelope glycoprotein (Env) trimers that have been challenging to characterize structurally. Here, we describe the crystal structure at 4.7 angstroms of a soluble, cleaved Env trimer that is stabilized and antigenically near-native (termed the BG505 SOSIP.664 gp140 trimer) in complex with a potent broadly neutralizing antibody, PGT122. The structure shows a prefusion state of gp41, the interaction between the component gp120 and gp41 subunits, and how a close association between the gp120 V1/V2/V3 loops stabilizes the trimer apex around the threefold axis. The complete epitope of PGT122 on the trimer involves gp120 V1, V3, and several surrounding glycans. This trimer structure advances our understanding of how Env functions and is presented to the immune system, and provides a blueprint for structure-based vaccine design.


Science | 2011

A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield.

Robert Pejchal; Katie J. Doores; Laura M. Walker; Reza Khayat; Po-Ssu Huang; Sheng-Kai Wang; Robyn L. Stanfield; Jean-Philippe Julien; Alejandra Ramos; Matthew Crispin; Rafael S. Depetris; Umesh Katpally; Andre J. Marozsan; Albert Cupo; Sebastien Maloveste; Yan Liu; Ryan McBride; Yukishige Ito; Rogier W. Sanders; Cassandra Ogohara; James C. Paulson; Ten Feizi; Christopher N. Scanlan; Chi-Huey Wong; John P. Moore; William C. Olson; Andrew B. Ward; Pascal Poignard; William R. Schief; Dennis R. Burton

An HIV antibody achieves potency and breadth by binding simultaneously to two conserved glycans on the viral envelope protein. The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man9 at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.


Science | 2013

Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer

Dmitry Lyumkis; Jean-Philippe Julien; Natalia de Val; Albert Cupo; Clinton S. Potter; Per Johan Klasse; Dennis R. Burton; Rogier W. Sanders; John P. Moore; Bridget Carragher; Ian A. Wilson; Andrew B. Ward

Knowing the Enemy Infection of host cells by HIV-1 is mediated by an envelope glycoprotein (Env) trimeric spike on the surface of the virus. Proteins comprising the Env trimer must be cleaved for infectivity, and thus viral fusion involves three Env conformations. The flexibility of the Env trimer has made it a challenge to determine a high-resolution structure, although such a structure is key both for understanding trimer function and for guiding vaccine design. Lyumkis et al. (p. 1484) and Julien et al. (p. 1477) studied soluble cleaved trimers stabilized by specific mutations but that have kept a near-native antigenicity profile. Lyumkis et al. present a high-resolution structure of the trimer in complex with a broadly neutralizing antibody, and Julien et al. present a crystal structure of the trimer in complex with another broadly neutralizing antibody. Key structural features dictate how the HIV envelope protein functions and interacts with the human immune system. The HIV-1 envelope glycoprotein (Env) trimer contains the receptor binding sites and membrane fusion machinery that introduce the viral genome into the host cell. As the only target for broadly neutralizing antibodies (bnAbs), Env is a focus for rational vaccine design. We present a cryo–electron microscopy reconstruction and structural model of a cleaved, soluble Env trimer (termed BG505 SOSIP.664 gp140) in complex with a CD4 binding site (CD4bs) bnAb, PGV04, at 5.8 angstrom resolution. The structure reveals the spatial arrangement of Env components, including the V1/V2, V3, HR1, and HR2 domains, as well as shielding glycans. The structure also provides insights into trimer assembly, gp120-gp41 interactions, and the CD4bs epitope cluster for bnAbs, which covers a more extensive area and defines a more complex site of vulnerability than previously described.


Nature | 2014

Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies

Nicole A. Doria-Rose; Chaim A. Schramm; Jason Gorman; Penny L. Moore; Jinal N. Bhiman; Brandon J. DeKosky; Michael J. Ernandes; Ivelin S. Georgiev; Helen J. Kim; Marie Pancera; Ryan P. Staupe; Han R. Altae-Tran; Robert T. Bailer; Ema T. Crooks; Albert Cupo; Aliaksandr Druz; Nigel Garrett; Kam Hon Hoi; Rui Kong; Mark K. Louder; Nancy S. Longo; Krisha McKee; Molati Nonyane; Sijy O’Dell; Ryan S. Roark; Rebecca S. Rudicell; Stephen D. Schmidt; Daniel J. Sheward; Cinque Soto; Constantinos Kurt Wibmer

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01–12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.


PLOS Pathogens | 2013

A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies

Rogier W. Sanders; Ronald Derking; Albert Cupo; Jean-Philippe Julien; Anila Yasmeen; Natalia de Val; Helen J. Kim; Claudia Blattner; Alba Torrents de la Peña; Jacob Korzun; Michael Golabek; Kevin de los Reyes; Thomas J. Ketas; Marit J. van Gils; C. Richter King; Ian A. Wilson; Andrew B. Ward; Per Johan Klasse; John P. Moore

A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.


Nature Structural & Molecular Biology | 2013

Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120.

Leopold Kong; Jeong Hyun Lee; Katie J. Doores; Charles D. Murin; Jean-Philippe Julien; Ryan McBride; Yan Liu; Andre J. Marozsan; Albert Cupo; Per Johan Klasse; Simon Hoffenberg; Michael J. Caulfield; C. Richter King; Yuanzi Hua; Khoa Le; Reza Khayat; Marc C. Deller; Thomas Clayton; Henry Tien; Ten Feizi; Rogier W. Sanders; James C. Paulson; John P. Moore; Robyn L. Stanfield; Dennis R. Burton; Andrew B. Ward; Ian A. Wilson

A substantial proportion of the broadly neutralizing antibodies (bnAbs) identified in certain HIV-infected donors recognize glycan-dependent epitopes on HIV-1 gp120. Here we elucidate how the bnAb PGT 135 binds its Asn332 glycan–dependent epitope from its 3.1-Å crystal structure with gp120, CD4 and Fab 17b. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield and access the gp120 protein surface. EM reveals that PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. Combined structural studies of PGT 135, PGT 128 and 2G12 show that this Asn332-dependent antigenic region is highly accessible and much more extensive than initially appreciated, which allows for multiple binding modes and varied angles of approach; thereby it represents a supersite of vulnerability for antibody neutralization.


Immunity | 2014

Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers.

Claudia Blattner; Jeong Hyun Lee; Kwinten Sliepen; Ronald Derking; Emilia Falkowska; Alba Torrents de la Peña; Albert Cupo; Jean-Philippe Julien; Marit J. van Gils; Peter S. Lee; Wenjie Peng; James C. Paulson; Pascal Poignard; Dennis R. Burton; John P. Moore; Rogier W. Sanders; Ian A. Wilson; Andrew B. Ward

All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9

Jean-Philippe Julien; Jeong Hyun Lee; Albert Cupo; Charles D. Murin; Ronald Derking; Simon Hoffenberg; Michael J. Caulfield; C. Richter King; Andre J. Marozsan; Per Johan Klasse; Rogier W. Sanders; John P. Moore; Ian A. Wilson; Andrew B. Ward

PG9 is the founder member of an expanding family of glycan-dependent human antibodies that preferentially bind the HIV (HIV-1) envelope (Env) glycoprotein (gp) trimer and broadly neutralize the virus. Here, we show that a soluble SOSIP.664 gp140 trimer constructed from the Clade A BG505 sequence binds PG9 with high affinity (∼11 nM), enabling structural and biophysical characterizations of the PG9:Env trimer complex. The BG505 SOSIP.664 gp140 trimer is remarkably stable as assessed by electron microscopy (EM) and differential scanning calorimetry. EM, small angle X-ray scattering, size exclusion chromatography with inline multiangle light scattering and isothermal titration calorimetry all indicate that only a single PG9 fragment antigen-binding (Fab) binds to the Env trimer. An ∼18 Å EM reconstruction demonstrates that PG9 recognizes the trimer asymmetrically at its apex via contact with two of the three gp120 protomers, possibly contributing to its reported preference for a quaternary epitope. Molecular modeling and isothermal titration calorimetry binding experiments with an engineered PG9 mutant suggest that, in addition to the N156 and N160 glycan interactions observed in crystal structures of PG9 with a scaffolded V1/V2 domain, PG9 makes secondary interactions with an N160 glycan from an adjacent gp120 protomer in the antibody–trimer complex. Together, these structural and biophysical findings should facilitate the design of HIV-1 immunogens that possess all elements of the quaternary PG9 epitope required to induce broadly neutralizing antibodies against this region.


PLOS Pathogens | 2013

Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans.

Jean-Philippe Julien; Devin Sok; Reza Khayat; Jeong Hyun Lee; Katherine Doores; Laura M. Walker; Alejandra Ramos; Devan Diwanji; Robert Pejchal; Albert Cupo; Umesh Katpally; Rafael S. Depetris; Robyn L. Stanfield; Ryan McBride; Andre J. Marozsan; James C. Paulson; Rogier W. Sanders; John P. Moore; Dennis R. Burton; Pascal Poignard; Andrew B. Ward; Ian A. Wilson

New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml−1. Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664) reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.


Cell | 2015

Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice.

Pia Dosenovic; Lotta von Boehmer; Amelia Escolano; Joseph G. Jardine; Natalia T. Freund; Alexander D. Gitlin; Andrew T. McGuire; Daniel W. Kulp; Thiago Y. Oliveira; Louise Scharf; John Pietzsch; Matthew D. Gray; Albert Cupo; Marit J. van Gils; Kai Hui Yao; Cassie Liu; Anna Gazumyan; Michael S. Seaman; Pamela J. Bjorkman; Rogier W. Sanders; John P. Moore; Leonidas Stamatatos; William R. Schief; Michel C. Nussenzweig

A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens.

Collaboration


Dive into the Albert Cupo's collaboration.

Top Co-Authors

Avatar

John P. Moore

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Ozorowski

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis R. Burton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jeong Hyun Lee

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge