Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel Ozorowski is active.

Publication


Featured researches published by Gabriel Ozorowski.


Science | 2016

Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer.

Jeong Hyun Lee; Gabriel Ozorowski; Andrew B. Ward

A more complete look at the HIV-1 envelope HIV-1 uses its envelope protein (Env), a large glycoprotein present on the viral surface, to enter target cells. Env forms trimers on the viral surface. Structural studies of solubilized Env trimers have provided important insights into viral entry and antibody binding, but soluble trimers lack several important insoluble regions of the native protein. Lee et al. used cryo–electron microscopy to solve the structure of a trimeric Env protein of HIV-1, missing only its cytoplasmic tail, in complex with broadly neutralizing antibodies. A more complete understanding of Envs structure may aid in vaccine design ef orts. Science, this issue p. 1043 Interactions between the membrane proximal regions of the HIV-1 glycoprotein and two neutralizing antibodies are visualized. The envelope glycoprotein trimer (Env) on the surface of HIV-1 recognizes CD4+ T cells and mediates viral entry. During this process, Env undergoes substantial conformational rearrangements, making it difficult to study in its native state. Soluble stabilized trimers have provided valuable insights into the Env structure, but they lack the hydrophobic membrane proximal external region (MPER, an important target of broadly neutralizing antibodies), the transmembrane domain, and the cytoplasmic tail. Here we present (i) a cryogenic electron microscopy (cryo-EM) structure of a clade B virus Env, which lacks only the cytoplasmic tail and is stabilized by the broadly neutralizing antibody PGT151, at a resolution of 4.2 angstroms and (ii) a reconstruction of this form of Env in complex with PGT151 and MPER-targeting antibody 10E8 at a resolution of 8.8 angstroms. These structures provide new insights into the wild-type Env structure.


Journal of Virology | 2015

A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B env Gene

Pavel Pugach; Gabriel Ozorowski; Albert Cupo; Rajesh P. Ringe; Anila Yasmeen; Natalia de Val; Ronald Derking; Helen J. Kim; Jacob Korzun; Michael Golabek; Kevin de los Reyes; Thomas J. Ketas; Jean-Philippe Julien; Dennis R. Burton; Ian A. Wilson; Rogier W. Sanders; Per Johan Klasse; Andrew B. Ward; John P. Moore

ABSTRACT Recombinant trimeric mimics of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike should expose as many epitopes as possible for broadly neutralizing antibodies (bNAbs) but few, if any, for nonneutralizing antibodies (non-NAbs). Soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A strain BG505 approach this ideal and are therefore plausible vaccine candidates. Here, we report on the production and in vitro properties of a new SOSIP.664 trimer derived from a subtype B env gene, B41, including how to make this protein in low-serum media without proteolytic damage (clipping) to the V3 region. We also show that nonclipped trimers can be purified successfully via a positive-selection affinity column using the bNAb PGT145, which recognizes a quaternary structure-dependent epitope at the trimer apex. Negative-stain electron microscopy imaging shows that the purified, nonclipped, native-like B41 SOSIP.664 trimers contain two subpopulations, which we propose represent an equilibrium between the fully closed and a more open conformation. The latter is different from the fully open, CD4 receptor-bound conformation and may represent an intermediate state of the trimer. This new subtype B trimer adds to the repertoire of native-like Env proteins that are suitable for immunogenicity and structural studies. IMPORTANCE The cleaved, trimeric envelope protein complex is the only neutralizing antibody target on the HIV-1 surface. Many vaccine strategies are based on inducing neutralizing antibodies. For HIV-1, one approach involves using recombinant, soluble protein mimics of the native trimer. At present, the only reliable way to make native-like, soluble trimers in practical amounts is via the introduction of specific sequence changes that confer stability on the cleaved form of Env. The resulting proteins are known as SOSIP.664 gp140 trimers, and the current paradigm is based on the BG505 subtype A env gene. Here, we describe the production and characterization of a SOSIP.664 protein derived from a subtype B gene (B41), together with a simple, one-step method to purify native-like trimers by affinity chromatography with a trimer-specific bNAb, PGT145. The resulting trimers will be useful for structural and immunogenicity experiments aimed at devising ways to make an effective HIV-1 vaccine.


Cell | 2015

Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes

Steven W. de Taeye; Gabriel Ozorowski; Alba Torrents de la Peña; Jean-Philippe Julien; Tom L. G. M. van den Kerkhof; Judith A. Burger; Laura K. Pritchard; Pavel Pugach; Anila Yasmeen; Jordan Crampton; Joyce K. Hu; Ilja Bontjer; Jonathan L. Torres; Heather Arendt; Joanne DeStefano; Wayne C. Koff; Hanneke Schuitemaker; Dirk Eggink; Ben Berkhout; Hansi J. Dean; Celia C. LaBranche; Shane Crotty; Max Crispin; David C. Montefiori; P. J. Klasse; Kelly K. Lee; John P. Moore; Ian A. Wilson; Andrew B. Ward; Rogier W. Sanders

The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.


Cell | 2016

Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody

Mattia Bonsignori; Tongqing Zhou; Zizhang Sheng; Lei Chen; Feng Gao; M. Gordon Joyce; Gabriel Ozorowski; Gwo-Yu Chuang; Chaim A. Schramm; Kevin Wiehe; S. Munir Alam; Todd Bradley; Morgan A. Gladden; Kwan-Ki Hwang; Sheelah Iyengar; Amit Kumar; Xiaozhi Lu; Kan Luo; Michael C. Mangiapani; Robert Parks; Hongshuo Song; Priyamvada Acharya; Robert T. Bailer; Allen Cao; Aliaksandr Druz; Ivelin S. Georgiev; Young Do Kwon; Mark K. Louder; Baoshan Zhang; Anqi Zheng

Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.


Immunity | 2016

HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies.

Jon M. Steichen; Daniel W. Kulp; Talar Tokatlian; Amelia Escolano; Pia Dosenovic; Robyn L. Stanfield; Laura E. McCoy; Gabriel Ozorowski; Xiaozhen Hu; Oleksandr Kalyuzhniy; Bryan Briney; Torben Schiffner; Fernando Garces; Natalia T. Freund; Alexander D. Gitlin; Sergey Menis; Erik Georgeson; Michael Kubitz; Yumiko Adachi; Meaghan Jones; Andrew Ayk Mutafyan; Dong Soo Yun; Christian T. Mayer; Andrew B. Ward; Dennis R. Burton; Ian A. Wilson; Darrell J. Irvine; Michel C. Nussenzweig; William R. Schief

Summary Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.


Cell | 2016

Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies.

Bryan Briney; Devin Sok; Joseph G. Jardine; Daniel W. Kulp; Patrick Skog; Sergey Menis; Ronald Jacak; Oleksandr Kalyuzhniy; Natalia de Val; Fabian Sesterhenn; Khoa Le; Alejandra Ramos; Meaghan Jones; Karen L. Saye-Francisco; Tanya R. Blane; Skye Spencer; Erik Georgeson; Xiaozhen Hu; Gabriel Ozorowski; Yumiko Adachi; Michael Kubitz; Anita Sarkar; Ian A. Wilson; Andrew B. Ward; David Nemazee; Dennis R. Burton; William R. Schief

Summary Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses.


Science | 2016

Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody

Rui Kong; Ke Xu; Tongqing Zhou; Priyamvada Acharya; Thomas Lemmin; Liu K; Gabriel Ozorowski; Cinque Soto; Justin D. Taft; Robert T. Bailer; Evan M. Cale; Lei Chen; Choi Cw; Gwo-Yu Chuang; Nicole A. Doria-Rose; Aliaksandr Druz; Ivelin S. Georgiev; Jason Gorman; Jian-Dong Huang; Michael Gordon Joyce; Mark K. Louder; Xiaochu Ma; Krisha McKee; Sijy O'Dell; Marie Pancera; Yili Yang; Scott C. Blanchard; Walther Mothes; Dennis R. Burton; Wayne C. Koff

An antibody to block viral fusion A small fraction of HIV-1–infected individuals develop broad and potent antibodies that bind the HIV-1 envelope protein (Env). These antibodies recognize a limited set of conserved epitopes on Env, such as Envs host receptor-binding site. Kong et al. now report a neutralizing antibody isolated from an HIV-1–infected individual that binds to the fusion peptide of Env. This is unexpected because viruses often try to mask such key components of their cell entry machinery from antibody attack. Crystal structures of the antibody bound to the fusion peptide and to Env itself define the epitope, provide insight into the specific mechanism of antibody binding, and may inform HIV-1 vaccine design. Science, this issue p. 828 A neutralizing antibody against HIV-1 unexpectedly targets a key component of the virus’ cell entry machinery. The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. Here, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showed that the N-terminal portion of the fusion peptide can be solvent-exposed. These results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.


PLOS Pathogens | 2015

Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer

Ronald Derking; Gabriel Ozorowski; Kwinten Sliepen; Anila Yasmeen; Albert Cupo; Jonathan L. Torres; Jean-Philippe Julien; Jeong Hyun Lee; Thijs van Montfort; Steven W. de Taeye; Mark Connors; Dennis R. Burton; Ian A. Wilson; Per Johan Klasse; Andrew B. Ward; John P. Moore; Rogier W. Sanders

The trimeric envelope (Env) spike is the focus of vaccine design efforts aimed at generating broadly neutralizing antibodies (bNAbs) to protect against HIV-1 infection. Three recent developments have facilitated a thorough investigation of the antigenic structure of the Env trimer: 1) the isolation of many bNAbs against multiple different epitopes; 2) the generation of a soluble trimer mimic, BG505 SOSIP.664 gp140, that expresses most bNAb epitopes; 3) facile binding assays involving the oriented immobilization of tagged trimers. Using these tools, we generated an antigenic map of the trimer by antibody cross-competition. Our analysis delineates three well-defined epitope clusters (CD4 binding site, quaternary V1V2 and Asn332-centered oligomannose patch) and new epitopes at the gp120-gp41 interface. It also identifies the relationships among these clusters. In addition to epitope overlap, we defined three more ways in which antibodies can cross-compete: steric competition from binding to proximal but non-overlapping epitopes (e.g., PGT151 inhibition of 8ANC195 binding); allosteric inhibition (e.g., PGT145 inhibition of 1NC9, 8ANC195, PGT151 and CD4 binding); and competition by reorientation of glycans (e.g., PGT135 inhibition of CD4bs bNAbs, and CD4bs bNAb inhibition of 8ANC195). We further demonstrate that bNAb binding can be complex, often affecting several other areas of the trimer surface beyond the epitope. This extensive analysis of the antigenic structure and the epitope interrelationships of the Env trimer should aid in design of both bNAb-based therapies and vaccines intended to induce bNAbs.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens

Jean-Philippe Julien; Jeong Hyun Lee; Gabriel Ozorowski; Yuanzi Hua; Alba Torrents de la Peña; Steven W. de Taeye; Travis Nieusma; Albert Cupo; Anila Yasmeen; Michael Golabek; Pavel Pugach; Per Johan Klasse; John P. Moore; Rogier W. Sanders; Andrew B. Ward; Ian A. Wilson

Significance A successful HIV-1 vaccine should generate an immune response capable of neutralizing the enormous diversity of globally circulating viruses. Here, we report the discovery and characterization of two clade C recombinant envelope glycoprotein trimers with native-like structural and antigenic properties, including epitopes for all known classes of broadly neutralizing antibodies (bnAbs). Together with previously described trimers from other clades, these two new trimers will aid in immunization strategies designed to induce bnAbs to HIV-1. A key challenge in the quest toward an HIV-1 vaccine is design of immunogens that can generate a broadly neutralizing antibody (bnAb) response against the enormous sequence diversity of the HIV-1 envelope glycoprotein (Env). We previously demonstrated that a recombinant, soluble, fully cleaved SOSIP.664 trimer based on the clade A BG505 sequence is a faithful antigenic and structural mimic of the native trimer in its prefusion conformation. Here, we sought clade C native-like trimers with comparable properties. We identified DU422 and ZM197M SOSIP.664 trimers as being appropriately thermostable (Tm of 63.4 °C and 62.7 °C, respectively) and predominantly native-like, as determined by negative-stain electron microscopy (EM). Size exclusion chromatography, ELISA, and surface plasmon resonance further showed that these trimers properly display epitopes for all of the major bnAb classes, including quaternary-dependent, trimer-apex (e.g., PGT145) and gp120/gp41 interface (e.g., PGT151) epitopes. A cryo-EM reconstruction of the ZM197M SOSIP.664 trimer complexed with VRC01 Fab against the CD4 binding site at subnanometer resolution revealed a striking overall similarity to its BG505 counterpart with expected local conformational differences in the gp120 V1, V2, and V4 loops. These stable clade C trimers contribute additional diversity to the pool of native-like Env immunogens as key components of strategies to induce bnAbs to HIV-1.


Journal of Virology | 2015

Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers

Rajesh P. Ringe; Anila Yasmeen; Gabriel Ozorowski; Eden P. Go; Laura K. Pritchard; Thomas A. Ketas; Christopher A. Cottrell; Ian A. Wilson; Rogier W. Sanders; Albert Cupo; Max Crispin; Kelly K. Lee; Heather Desaire; Andrew B. Ward; P. J. Klasse; John P. Moore

ABSTRACT We have investigated factors that influence the production of native-like soluble, recombinant trimers based on the env genes of two isolates of human immunodeficiency virus type 1 (HIV-1), specifically 92UG037.8 (clade A) and CZA97.012 (clade C). When the recombinant trimers based on the env genes of isolates 92UG037.8 and CZA97.012 were made according to the SOSIP.664 design and purified by affinity chromatography using broadly neutralizing antibodies (bNAbs) against quaternary epitopes (PGT145 and PGT151, respectively), the resulting trimers are highly stable and they are fully native-like when visualized by negative-stain electron microscopy. They also have a native-like (i.e., abundant) oligomannose glycan composition and display multiple bNAb epitopes while occluding those for nonneutralizing antibodies. In contrast, uncleaved, histidine-tagged Foldon (Fd) domain-containing gp140 proteins (gp140UNC-Fd-His), based on the same env genes, very rarely form native-like trimers, a finding that is consistent with their antigenic and biophysical properties and glycan composition. The addition of a 20-residue flexible linker (FL20) between the gp120 and gp41 ectodomain (gp41ECTO) subunits to make the uncleaved 92UG037.8 gp140-FL20 construct is not sufficient to create a native-like trimer, but a small percentage of native-like trimers were produced when an I559P substitution in gp41ECTO was also present. The further addition of a disulfide bond (SOS) to link the gp120 and gp41 subunits in the uncleaved gp140-FL20-SOSIP protein increases native-like trimer formation to ∼20 to 30%. Analysis of the disulfide bond content shows that misfolded gp120 subunits are abundant in uncleaved CZA97.012 gp140UNC-Fd-His proteins but very rare in native-like trimer populations. The design and stabilization method and the purification strategy are, therefore, all important influences on the quality of trimeric Env proteins and hence their suitability as vaccine components. IMPORTANCE Soluble, recombinant multimeric proteins based on the HIV-1 env gene are current candidate immunogens for vaccine trials in humans. These proteins are generally designed to mimic the native trimeric envelope glycoprotein (Env) that is the target of virus-neutralizing antibodies on the surfaces of virions. The underlying hypothesis is that an Env-mimetic protein may be able to induce antibodies that can neutralize the virus broadly and potently enough for a vaccine to be protective. Multiple different designs for Env-mimetic trimers have been put forth. Here, we used the CZA97.012 and 92UG037.8 env genes to compare some of these designs and determine which ones best mimic virus-associated Env trimers. We conclude that the most widely used versions of CZA97.012 and 92UG037.8 oligomeric Env proteins do not resemble the trimeric Env glycoprotein on HIV-1 viruses, which has implications for the design and interpretation of ongoing or proposed clinical trials of these proteins.

Collaboration


Dive into the Gabriel Ozorowski's collaboration.

Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis R. Burton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Crispin

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge