Albert J. Keung
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Albert J. Keung.
Biophysical Journal | 2008
Krishanu Saha; Albert J. Keung; Elizabeth F. Irwin; Yang Li; Lauren Little; David V. Schaffer; Kevin E. Healy
Although biochemical signals that modulate stem cell self-renewal and differentiation were extensively studied, only recently were the mechanical properties of a stem cells microenvironment shown to regulate its behavior. It would be desirable to have independent control over biochemical and mechanical cues, to analyze their relative and combined effects on stem-cell function. We developed a synthetic, interfacial hydrogel culture system, termed variable moduli interpenetrating polymer networks (vmIPNs), to assess the effects of soluble signals, adhesion ligand presentation, and material moduli from 10-10,000 Pa on adult neural stem-cell (aNSC) behavior. The aNSCs proliferated when cultured in serum-free growth media on peptide-modified vmIPNs with moduli of >/=100 Pa. In serum-free neuronal differentiation media, a peak level of the neuronal marker, beta-tubulin III, was observed on vmIPNs of 500 Pa, near the physiological stiffness of brain tissue. Furthermore, under mixed differentiation conditions with serum, softer gels ( approximately 100-500 Pa) greatly favored neurons, whereas harder gels ( approximately 1,000-10,000 Pa) promoted glial cultures. In contrast, cell spreading, self-renewal, and differentiation were inhibited on substrata with moduli of approximately 10 Pa. This work demonstrates that the mechanical and biochemical properties of an aNSC microenvironment can be tuned to regulate the self-renewal and differentiation of aNSCs.
Annual Review of Cell and Developmental Biology | 2010
Albert J. Keung; Sanjay Kumar; David V. Schaffer
Stem cells reside in adult and embryonic tissues in a broad spectrum of developmental stages and lineages, and they are thus naturally exposed to diverse microenvironments or niches that modulate their hallmark behaviors of self-renewal and differentiation into one or more mature lineages. Within each such microenvironment, stem cells sense and process multiple biochemical and biophysical cues, which can exert redundant, competing, or orthogonal influences to collectively regulate cell fate and function. The proper presentation of these myriad regulatory signals is required for tissue development and homeostasis, and their improper appearance can potentially lead to disease. Whereas these complex regulatory cues can be challenging to dissect using traditional cell culture paradigms, recently developed engineered material systems offer advantages for investigating biochemical and biophysical cues, both static and dynamic, in a controlled, modular, and quantitative fashion. Advances in the development and use of such systems have helped elucidate novel regulatory mechanisms controlling stem cell behavior, particularly the importance of solid-phase mechanical and immobilized biochemical microenvironmental signals, with implications for basic stem cell biology, disease, and therapeutics.
Stem Cells | 2011
Albert J. Keung; Elena M. de Juan-Pardo; David V. Schaffer; Sanjay Kumar
Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self‐renewal and differentiation, and it has recently been suggested that mechanical and solid‐state cues, such as extracellular matrix (ECM) stiffness, can also regulate the functions of NSCs and other stem cell types. However, relatively little is known of the molecular mechanisms through which stem cells transduce mechanical inputs into fate decisions, the extent to which mechanical inputs instruct fate decisions versus select for or against lineage‐committed blast populations, or the in vivo relevance of mechanotransductive signaling molecules in native stem cell niches. Here we demonstrate that ECM‐derived mechanical signals act through Rho GTPases to activate the cellular contractility machinery in a key early window during differentiation to regulate NSC lineage commitment. Furthermore, culturing NSCs on increasingly stiff ECMs enhances RhoA and Cdc42 activation, increases NSC stiffness, and suppresses neurogenesis. Likewise, inhibiting RhoA and Cdc42 or downstream regulators of cellular contractility rescues NSCs from stiff matrix‐ and Rho GTPase‐induced neurosuppression. Importantly, Rho GTPase expression and ECM stiffness do not alter proliferation or apoptosis rates indicating that an instructive rather than selective mechanism modulates lineage distributions. Finally, in the adult brain, RhoA activation in hippocampal progenitors suppresses neurogenesis, analogous to its effect in vitro. These results establish Rho GTPase‐based mechanotransduction and cellular stiffness as biophysical regulators of NSC fate in vitro and RhoA as an important regulatory protein in the hippocampal stem cell niche. STEM CELLS 2011;29:1886–1897
Molecular Cancer | 2010
Wilbur Lam; Lizhi Cao; Vaibhavi Umesh; Albert J. Keung; Shamik Sen; Sanjay Kumar
Neuroblastoma is a pediatric malignancy characterized by tremendous clinical heterogeneity, in which some tumors are extremely aggressive while others spontaneously differentiate into benign forms. Because the degree of differentiation correlates with prognosis, and because differentiating agents such as retinoic acid (RA) have proven to decrease mortality, much effort has been devoted to identifying critical regulators of neuroblastoma differentiation in the cellular microenvironment, including cues encoded in the extracellular matrix (ECM). While signaling between tumor cells and the ECM is classically regarded to be based purely on biochemical recognition of ECM ligands by specific cellular receptors, a number of recent studies have made it increasingly clear that the biophysical properties of the ECM may also play an important role in this cross-talk. Given that RA-mediated neuroblastoma differentiation is accompanied by profound changes in cell morphology and neurite extension, both of which presumably rely upon mechanotransductive signaling systems, it occurred to us that mechanical cues from the ECM might also influence RA-mediated differentiation, which in turn might regulate clinically-relevant aspects of neuroblastoma biology. In this study, we tested this hypothesis by subjecting a series of neuroblastoma culture models to ECM microenvironments of varying mechanical stiffness and examined the regulatory role of ECM stiffness in proliferation, differentiation, and expression of tumor markers. We find that increasing ECM stiffness enhances neuritogenesis and suppresses cell proliferation. Remarkably, increasing ECM stiffness also reduces expression of N-Myc, a transcription factor involved in multiple aspects of oncogenic proliferation that is used for evaluating prognosis and clinical grading of neuroblastoma. Furthermore, the addition of RA enhances all of these effects for all ECM stiffnesses tested. Together, our data strongly support the notion that the mechanical signals from the cellular microenvironment influence neuroblastoma differentiation and do so synergistically with RA. These observations support further investigation of the role of microenvironmental mechanical signals in neuroblastoma proliferation and differentiation and suggest that pharmacological agents that modulate the underlying mechanotransductive signaling pathways may have a role in neuroblastoma therapy.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2010
Albert J. Keung; Kevin E. Healy; Sanjay Kumar; David V. Schaffer
Stem cells are defined by their ability to self‐renew and to differentiate into one or more mature lineages, and they reside within natural niches in many types of adult and embryonic tissues that present them with complex signals to regulate these two hallmark properties. The diverse nature of these in vivo microenvironments raises important questions about the microenvironmental cues regulating stem cell plasticity, and the stem cell field has built a strong foundation of knowledge on the biochemical identities and regulatory effects of the soluble, cellular, and extracellular matrix factors surrounding stem cells through the isolation and culture of stem cells in vitro within microenvironments that, in effect, emulate the properties of the natural niche. Recent work, however, has expanded the fields perspective to include biophysical and dynamic characteristics of the microenvironment. These include biomechanical characteristics such as elastic modulus, shear force, and cyclic strain; architectural properties such as geometry, topography, and dimensionality; and dynamic structures and ligand profiles. We will review how these microenvironmental characteristics have been shown to regulate stem cell fate and discuss future research directions that may help expand our current understanding of stem cell biology and aid its application to regenerative medicine. Copyright
Biophysical Journal | 2012
Joanna L. MacKay; Albert J. Keung; Sanjay Kumar
Cellular mechanical properties have emerged as central regulators of many critical cell behaviors, including proliferation, motility, and differentiation. Although investigators have developed numerous techniques to influence these properties indirectly by engineering the extracellular matrix (ECM), relatively few tools are available to directly engineer the cells themselves. Here we present a genetic strategy for obtaining graded, dynamic control over cellular mechanical properties by regulating the expression of mutant mechanotransductive proteins from a single copy of a gene placed under a repressible promoter. With the use of constitutively active mutants of RhoA GTPase and myosin light chain kinase, we show that varying the expression level of either protein produces graded changes in stress fiber assembly, traction force generation, cellular stiffness, and migration speed. Using this approach, we demonstrate that soft ECMs render cells maximally sensitive to changes in RhoA activity, and that by modulating the ability of cells to engage and contract soft ECMs, we can dynamically control cell spreading, migration, and matrix remodeling. Thus, in addition to providing quantitative relationships between mechanotransductive signaling, cellular mechanical properties, and dynamic cell behaviors, this strategy enables us to control the physical interactions between cells and the ECM and thereby dictate how cells respond to matrix properties.
Annual Review of Chemical and Biomolecular Engineering | 2011
Randolph S. Ashton; Albert J. Keung; Joseph Peltier; David V. Schaffer
Stem cells offer tremendous biomedical potential owing to their abilities to self-renew and differentiate into cell types of multiple adult tissues. Researchers and engineers have increasingly developed novel discovery technologies, theoretical approaches, and cell culture systems to investigate microenvironmental cues and cellular signaling events that control stem cell fate. Many of these technologies facilitate high-throughput investigation of microenvironmental signals and the intracellular signaling networks and machinery processing those signals into cell fate decisions. As our aggregate empirical knowledge of stem cell regulation grows, theoretical modeling with systems and computational biology methods has and will continue to be important for developing our ability to analyze and extract important conceptual features of stem cell regulation from complex data. Based on this body of knowledge, stem cell engineers will continue to develop technologies that predictably control stem cell fate with the ultimate goal of being able to accurately and economically scale up these systems for clinical-grade production of stem cell therapeutics.
Scientific Reports | 2013
Albert J. Keung; Meimei Dong; David V. Schaffer; Sanjay Kumar
Most past studies of the biophysical regulation of stem cell differentiation have focused on initial lineage commitment or proximal differentiation events. It would be valuable to understand whether biophysical inputs also influence distal endpoints more closely associated with physiological function, such as subtype specification in neuronal differentiation. To explore this question, we cultured adult neural stem cells (NSCs) on variable stiffness ECMs under conditions that promote neuronal fate commitment for extended time periods to allow neuronal subtype differentiation. We find that ECM stiffness does not modulate the expression of NeuroD1 and TrkA/B/C or the percentages of pan-neuronal, GABAergic, or glutamatergic neuronal subtypes. Interestingly, however, an ECM stiffness of 700 Pa maximizes expression of pan-neuronal markers. These results suggest that a wide range of stiffnesses fully permit pan-neuronal NSC differentiation, that an intermediate stiffness optimizes expression of pan-neuronal genes, and that stiffness does not impact commitment to particular neuronal subtypes.
Stem Cells and Development | 2011
Joseph Peltier; Anthony Conway; Albert J. Keung; David V. Schaffer
Multiple extracellular factors have been shown to modulate adult hippocampal neural progenitor cell (NPC) proliferation and self-renewal, and we have previously shown that Akt is an important mediator of the effects of these extracellular factors on NPC proliferation and differentiation. However, very little work has investigated how and whether Akt is involved in maintaining the multipotency of these cells. Here we demonstrate that Akt promotes expression of Sox2, a core transcription factor important for the self-renewal of NPCs. Retroviral-mediated overexpression of wild-type Akt increased Sox2 protein expression, particularly under conditions that promote cell differentiation, whereas Akt inhibition decreased Sox2. Similarly, quantitative reverse transcription (RT)-PCR in differentiating cultures indicated that Akt rescued Sox2 mRNA to levels present under conditions that promote cell proliferation. Additionally, pharmacological inhibition of Akt did not affect Sox2 protein levels in cells constitutively expressing Sox2 from a retroviral vector, indicating that Akt does not affect Sox2 protein stability. Further, in contrast to Akt overexpression, Sox2 overexpression does not increase NPC viable cell number or proliferation yet does inhibit differentiation. Collectively, these results indicate that Akt promotes cell proliferation and maintenance of a multipotent state via two downstream paths.
Biophysical Journal | 2010
Albert J. Keung; Elena M. de Juan-Pardo; David V. Schaffer; Sanjay Kumar
Neural stem cells (NSCs) play important roles in learning and memory in the adult mammalian brain and may also serve as a source of cells in cell replacement therapies to treat neurodegenerative diseases. Therefore, investigating how NSC behavior is regulated is crucial to understanding the fundamental biology of the brain as well as in engineering biomedical therapies. Towards these ends, an increasing wealth of knowledge in the NSC field describes a complex picture of biochemical and genetic regulation of NSC self-renewal and differentiation. However, little is known about the biophysical control of NSC behavior by the extracellular matrix (ECM). Here we demonstrate that ECM-derived mechanical signals can act with Rho GTPases to regulate NSC stiffness and differentiation. Culturing NSCs on increasingly stiff ECMs suppresses neurogenesis and enhances gliogenesis, even in the absence of exogenous differentiating agents. This shift is accompanied by enhanced RhoA and Cdc42 activation and increased cellular stiffness. Direct manipulation of RhoA and Cdc42 activity disrupts the ability of NSCs to sense ECM stiffness and tips the balance between neurogenesis and gliogenesis in the presence and absence of exogenous differentiation cues. Inhibitors of a downstream effector of RhoA, Rho kinase, as well as inhibition of myosin II contractility rescues neuronal differentiation of NSCs cultured on stiff substrates as well as for NSCs expressing CA RhoA and CA Cdc42, suggesting that NSC stiffness/contractility regulates NSC differentiation. These results establish Rho GTPase-based mechanotransduction and cellular stiffness as novel regulators of NSC behavior.