Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Mihranyan is active.

Publication


Featured researches published by Albert Mihranyan.


Advanced Materials | 2011

Toward Flexible Polymer and Paper-Based Energy Storage Devices

Leif Nyholm; Gustav Nyström; Albert Mihranyan; Maria Strømme

All-polymer and paper-based energy storage devices have significant inherent advantages in comparison with many currently employed batteries and supercapacitors regarding environmental friendliness, flexibility, cost and versatility. The research within this field is currently undergoing an exciting development as new polymers, composites and paper-based devices are being developed. In this report, we review recent progress concerning the development of flexible energy storage devices based on electronically conducting polymers and cellulose containing composites with particular emphasis on paper-based batteries and supercapacitors. We discuss recent progress in the development of the most commonly used electronically conducting polymers used in flexible device prototypes, the advantages and disadvantages of this type of energy storage devices, as well as the two main approaches used in the manufacturing of paper-based charge storage devices.


Nano Letters | 2009

Ultrafast All-Polymer Paper-Based Batteries

Gustav Nyström; Aamir Razaq; Maria Strømme; Leif Nyholm; Albert Mihranyan

Conducting polymers for battery applications have been subject to numerous investigations during the last two decades. However, the functional charging rates and the cycling stabilities have so far been found to be insufficient for practical applications. These shortcomings can, at least partially, be explained by the fact that thick layers of the conducting polymers have been used to obtain sufficient capacities of the batteries. In the present letter, we introduce a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Our results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m2 g−1 and batteries based on this material can be charged with currents as high as 600 mA cm−2 with only 6% loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g−1 or 38−50 mAh g−1 per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems.


Journal of Physical Chemistry B | 2010

A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood

Gustav Nyström; Albert Mihranyan; Aamir Razaq; Tom Lindström; Leif Nyholm; Maria Strømme

It is demonstrated that it is possible to coat the individual fibers of wood-based nanocellulose with polypyrrole using in situ chemical polymerization to obtain an electrically conducting continuous high-surface-area composite. The experimental results indicate that the high surface area of the water dispersed material, to a large extent, is maintained upon normal drying without the use of any solvent exchange. Thus, the employed chemical polymerization of polypyrrole on the microfibrillated cellulose (MFC) nanofibers in the hydrogel gives rise to a composite, the structure of which—unlike that of uncoated MFC paper—does not collapse upon drying. The dry composite has a surface area of ∼90 m2/g and a conductivity of ∼1.5 S/cm, is electrochemically active, and exhibits an ion-exchange capacity for chloride ions of 289 C/g corresponding to a specific capacity of 80 mAh/g. The straightforwardness of the fabrication of the present nanocellulose composites should significantly facilitate industrial manufacturing of highly porous, electroactive conductive paper materials for applications including ion-exchange and paper-based energy storage devices.


Journal of Physical Chemistry B | 2008

A Novel High Specific Surface Area Conducting Paper Material Composed of Polypyrrole and Cladophora Cellulose

Albert Mihranyan; Leif Nyholm; Alfonso Garcia Bennett; Maria Strømme

We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and transmission electron microscopy, N 2 gas adsorption analysis, cyclic voltammetry, chronoamperometry and conductivity measurements at varying relative humidities. The specific surface area of the composite was found to be 57 m (2)/g and the fibrous structure of the Cladophora cellulose remained intact even after a 50 nm thick layer of polypyrrole had been coated on the cellulose fibers. The composite could be repeatedly used for electrochemically controlled extraction and desorption of chloride and an ion exchanging capacity of 370 C per g of composite was obtained as a result of the high surface area of the cellulose substrate. The influence of the oxidation and reduction potentials on the chloride ion exchange capacity and the nucleation of delocalized positive charges, forming conductive paths in the polypyrrole film, was also investigated. The creation of conductive paths during oxidation followed an effective medium rather than a percolative behavior, indicating that some conduction paths survive the polymer reduction steps. The present high surface area material should be well-suited for use in, e.g., electrochemically controlled ion exchange or separation devices, as well as sensors based on the fact that the material is compact, light, mechanically stable, and moldable into paper sheets.


RSC Advances | 2014

Translational study between structure and biological response of nanocellulose from wood and green algae

Kai Hua; Daniel O Carlsson; Eva Ålander; Tom Lindström; Maria Strømme; Albert Mihranyan; Natalia Ferraz

The influence of nanostructure on the cytocompatibility of cellulose films is analyzed providing insight into how physicochemical properties of surface modified microfibrillated cellulose (MFC) and Cladophora nanocellulose (CC) affect the materials cytocompatibility. CC is modified through TEMPO-mediated oxidation and glycidyltrimethylammonium chloride (EPTMAC) condensation to obtain anionic and cationic nanocellulose samples respectively, while anionic and cationic MFC samples are obtained by carboxymethylation and EPTMAC condensation respectively. Films of unmodified, anionic and cationic MFC and CC are prepared by vacuum filtration and characterized in terms of specific surface area, pore size distribution, degree of crystallinity, surface charge and water content. Human dermal fibroblasts are exposed to culture medium extracts of the films in an indirect contact cytotoxicity test. Moreover, cell adhesion and viability are evaluated in a direct contact assay and the effects of the physicochemical properties on cell behavior are discussed. In the indirect cytotoxicity test no toxic leachables are detected, evidencing that the CC and MFC materials are non-cytotoxic, independently of the chemical treatment that they have been subjected to. The direct contact tests show that carboxymethylated-MFC presents a more cytocompatible profile than unmodified and trimethylammonium-MFC. TEMPO–CC promotes fibroblast adhesion and presents cell viability comparable to the results obtained with the tissue culture material Thermanox. We hypothesize that the distinct aligned nanofiber structure present in the TEMPO–CC films is responsible for the improved cell adhesion. Thus, by controlling the surface properties of cellulose nanofibers, such as chemistry, charge, and orientation, cell adhesion properties can be promoted.


Journal of Biomedical Materials Research Part A | 2012

In vitro and in vivo toxicity of rinsed and aged nanocellulose–polypyrrole composites

Natalia Ferraz; Maria Strømme; Bengt Fellström; Sulena Pradhan; Leif Nyholm; Albert Mihranyan

Novel composites of nanocellulose and the conducting polymer polypyrrole (PPy) are herein suggested as potential candidates for active ion-extraction membranes in electrochemically controlled hemodialysis. This study has defined processing parameters to obtain a biocompatible nanocellulose-PPy composite, and for the first time, the effect of the composite aging on cell viability has been studied. The influence of rinsing and extraction process steps, as well as aging under different conditions (i.e. in air, at -20°C and in argon), on the electroactivity and cytotoxicity of a PPy-nanocellulose composite has been investigated. The biocompatibility evaluation was based on indirect toxicity assays with fibroblasts and monocyte cell lines and an acute toxicity test in mice, while the electroactivity was evaluated by cyclic voltammetry experiments. The as-prepared composite did not induce any cytotoxic response in vitro or in vivo. Extensive rinsing and 48 h incubation in biological buffer previous to the preparation of the culture medium extracts were, however, necessary to obtain a noncytotoxic composite. The as-prepared composite was also found to exhibit acceptable electrochemical performance, which was retained upon 4 weeks storage in argon atmosphere. It was shown that aging of the composite had a negative effect on biocompatibility, regardless of the storage condition. Thus, to allow for longtime storage of electroactive nanocellulose-PPy hemodialysis membranes, the degradation of PPy upon storage must be controlled. The present results show that the biocompatibility of PPy composites depends on the rinsing and pretreatment of the composite material as well as the aging of the material.


Advanced Healthcare Materials | 2014

A Size‐Exclusion Nanocellulose Filter Paper for Virus Removal

Giorgi Metreveli; Linus Wågberg; Eva Emmoth; Sándor Belák; Maria Strømme; Albert Mihranyan

This is the first time a 100% natural, unmodified nanofibrous polymer-based membrane is demonstrated capable of removing viruses solely based on the size-exclusion principle, with a log10 reduction value (LRV) ≥ 6.3 as limited by the assay lower detection limit and the feed virus titre, thereby matching the performance of industrial synthetic polymer virus removal filters.


Journal of Physical Chemistry B | 2009

Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites

Aamir Razaq; Albert Mihranyan; Ken Welch; Leif Nyholm; Maria Strømme

The electrochemically controlled anion absorption properties of a novel large surface area composite paper material composed of polypyrrole (PPy) and cellulose derived from Cladophora sp. algae, synthesized with two oxidizing agents, iron(III) chloride and phosphomolybdic acid (PMo), were analyzed in four different electrolytes containing anions (i.e., chloride, aspartate, glutamate, and p-toluenesulfonate) of varying size.The composites were characterized with scanning and transmission electron microscopy, N2 gas adsorption,and conductivity measurements. The potential-controlled ion exchange properties of the materials were studied by cyclic voltammetry and chronoamperometry at varying potentials. The surface area and conductivity of the iron(III) chloride synthesized sample were 58.8 m2/g and 0.65 S/cm, respectively, while the corresponding values for the PMo synthesized sample were 31.3 m2/g and 0.12 S/cm. The number of absorbed ions per sample mass was found to be larger for the iron(III) chloride synthesized sample than for the PMo synthesized one in all four electrolytes. Although the largest extraction yields were obtained in the presence of the smallest anion (i.e., chloride) for both samples, the relative degree of extraction for the largest ions (i.e., glutamate and p-toluenesulfonate) was higher for the PMo sample. This clearly shows that it is possible to increase the extraction yield of large anions by carrying out the PPy polymerization in the presence of large anions. The results likewise show that high ion exchange capacities, as well as extraction and desorption rates, can be obtained for large anions with high surface area composites coated with relatively thin layers of PPy.


Journal of the Royal Society Interface | 2012

Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification

Natalia Ferraz; Daniel O Carlsson; Jaan Hong; Rolf Larsson; Bengt Fellström; Leif Nyholm; Maria Strømme; Albert Mihranyan

Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility.


Materials Letters | 2002

What to do with all these algae

Maria Strømme; Albert Mihranyan; Ragnar Ek

Abstract The severe eutrophication of coastal areas is considered to be one of the most serious environmental threats of our time S. Nixon, Ambio 19 (1990) 101. Even if the nutrient outlet is curtailed, carpets of green algae filaments will remain for a long time as the algae life cycle feeds itself S. Naeem, D.R. Hahn, G. Schuurman, Nature 403 (2002) 762. One way to master this ecological problem is to remove algae from the cycle O. Jousson, J. Pawlowski, L. Zaninetti, F.W. Zechman, F. Dini, G. Di Guiseppe, R. Woodfield, A. Millar, A. Meinensz, Nature 408 (2000) 157. Hence, the necessity of finding some relevant use for green algae is obvious. It has been shown that cellulose powder from green algae sources has a higher level of crystallinity and a relatively larger surface area than higher plant cellulose R. Ek, C. Gustafsson, A. Nutt, T. Iversen, C, Nystrom, J. Mol. Recognit. 11 (1998) 263. Could these properties possibly be advantageous in pharmaceutical tablet manufacturing? Here, we show that green algae filaments provide an alternative raw material source for the production of microcrystalline cellulose with a hitherto unobserved combination of properties desirable for a tableting excipient.

Collaboration


Dive into the Albert Mihranyan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge