Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Ribera is active.

Publication


Featured researches published by Albert Ribera.


Journal of Clinical Investigation | 2013

Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy

Virginia Haurigot; Sara Marcó; Albert Ribera; Miguel Angel López García; Albert Ruzo; Pilar Villacampa; Eduard Ayuso; S. Añor; Anna Andaluz; Mercedes Pineda; Gemma García-Fructuoso; Maria Molas; Luca Maggioni; Sergio Muñoz; Sandra Motas; Jesús Ruberte; Federico Mingozzi; M. Pumarola; Fatima Bosch

For most lysosomal storage diseases (LSDs) affecting the CNS, there is currently no cure. The BBB, which limits the bioavailability of drugs administered systemically, and the short half-life of lysosomal enzymes, hamper the development of effective therapies. Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomic recessive LSD caused by a deficiency in sulfamidase, a sulfatase involved in the stepwise degradation of glycosaminoglycan (GAG) heparan sulfate. Here, we demonstrate that intracerebrospinal fluid (intra-CSF) administration of serotype 9 adenoassociated viral vectors (AAV9s) encoding sulfamidase corrects both CNS and somatic pathology in MPS IIIA mice. Following vector administration, enzymatic activity increased throughout the brain and in serum, leading to whole body correction of GAG accumulation and lysosomal pathology, normalization of behavioral deficits, and prolonged survival. To test this strategy in a larger animal, we treated beagle dogs using intracisternal or intracerebroventricular delivery. Administration of sulfamidase-encoding AAV9 resulted in transgenic expression throughout the CNS and liver and increased sulfamidase activity in CSF. High-titer serum antibodies against AAV9 only partially blocked CSF-mediated gene transfer to the brains of dogs. Consistently, anti-AAV antibody titers were lower in CSF than in serum collected from healthy and MPS IIIA-affected children. These results support the clinical translation of this approach for the treatment of MPS IIIA and other LSDs with CNS involvement.


Human Gene Therapy | 2012

Correction of pathological accumulation of glycosaminoglycans in central nervous system and peripheral tissues of MPSIIIA mice through systemic AAV9 gene transfer.

Albert Ruzo; Sara Marcó; Miquel Garcia; Pilar Villacampa; Albert Ribera; Eduard Ayuso; Lucca Maggioni; Federico Mingozzi; Virginia Haurigot; Fatima Bosch

Mucopolysaccharidosis type IIIA (MPSIIIA) is a rare lysosomal storage disorder caused by mutations in the sulfamidase gene. Accumulation of glycosaminoglycan (GAG) inside the lysosomes is associated with severe neurodegeneration as well as peripheral organ pathological changes leading to death of affected individuals during adolescence. There is no cure for MPSIIIA. Due to the limitation of the blood-brain barrier, enzyme replacement therapy and gene therapy strategies attempted thus far have not achieved whole-body correction of the disease. After the systemic administration of an adeno-associated virus 9 (AAV9) vector encoding for sulfamidase under the control of a ubiquitous promoter, we were able to obtain widespread expression of the therapeutic transgene in brain and in peripheral organs, and sulfamidase activity in serum of both male and female MPSIIIA mice. This was accompanied by the normalization of GAG storage levels in most peripheral organs. In brain, decrease in GAG tissue content following AAV9 gene transfer of sulfamidase was associated with the resolution of neuroinflammation. Finally, correction of disease phenotype resulted in a remarkable prolongation of survival of both male and female AAV-treated MPSIIIA mice. This proof-of-concept study will be relevant to the future development of therapies for MPSIIIA.


Journal of Biological Chemistry | 2009

Increased Intraocular Insulin-like Growth Factor-I Triggers Blood-Retinal Barrier Breakdown

Haurigot; Pilar Villacampa; Albert Ribera; Cristina Llombart; Assumpció Bosch; Nacher; David Ramos; Eduard Ayuso; Segovia Jc; Juan A. Bueren; Jesús Ruberte; Fatima Bosch

Blood-retinal barrier (BRB) breakdown is a key event in diabetic retinopathy and other ocular disorders that leads to increased retinal vascular permeability. This causes edema and tissue damage resulting in visual impairment. Insulin-like growth factor-I (IGF-I) is involved in these processes, although the relative contribution of increased systemic versus intraocular IGF-I remains controversial. Here, to elucidate the role of this factor in BRB breakdown, transgenic mice with either local or systemic elevations of IGF-I have been examined. High intraocular IGF-I, resulting from overexpression of IGF-I in the retina, increased IGF-I receptor content and signaling and led to accumulation of vascular endothelial growth factor. This was parallel to up-regulation of vascular Intercellular adhesion molecule I and retinal infiltration by bone marrow-derived microglial cells. These alterations resulted in increased vessel paracellular permeability to both low and high molecular weight compounds in IGF-I-overexpressing retinas and agreed with the loss of vascular tight junction integrity observed by electron microscopy and the altered junctional protein content. In contrast, mice with chronically elevated serum IGF-I did not show alterations in the retinal vasculature structure and permeability, indicating that circulating IGF-I cannot initiate BRB breakdown. Consistent with a key role of IGF-I signaling in retinal diseases, a strong up-regulation of the IGF-I receptor in human retinas with marked gliosis was also observed. Thus, this study demonstrates that intraocular IGF-I, but not systemic IGF-I, is sufficient to trigger processes leading to BRB breakdown and increased retinal vascular permeability. Therefore, therapeutic interventions designed to counteract local IGF-I effects may prove successful to prevent BRB disruption.


PLOS ONE | 2012

Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy.

Virginia Haurigot; Pilar Villacampa; Albert Ribera; Assumpció Bosch; David Ramos; Jesús Ruberte; Fatima Bosch

Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders.


Molecular Therapy | 2012

Liver Production of Sulfamidase Reverses Peripheral and Ameliorates CNS Pathology in Mucopolysaccharidosis IIIA Mice

Albert Ruzo; Miquel Garcia; Albert Ribera; Pilar Villacampa; Virginia Haurigot; Sara Marcó; Eduard Ayuso; Xavier M. Anguela; Carles Roca; Judith Agudo; David Ramos; Jesús Ruberte; Fatima Bosch

Mucopolysaccharidosis type IIIA (MPSIIIA) is an inherited lysosomal storage disease caused by deficiency of sulfamidase, resulting in accumulation of the glycosaminoglycan (GAG) heparan sulfate. It is characterized by severe progressive neurodegeneration, together with somatic alterations, which lead to death during adolescence. Here, we tested the ability of adeno-associated virus (AAV) vector-mediated genetic modification of either skeletal muscle or liver to revert the already established disease phenotype of 2-month-old MPSIIIA males and females. Intramuscular administration of AAV-Sulfamidase failed to achieve significant therapeutic benefit in either gender. In contrast, AAV8-mediated liver-directed gene transfer achieved high and sustained levels of circulating active sulfamidase, which reached normal levels in females and was fourfold higher in males, and completely corrected lysosomal GAG accumulation in most somatic tissues. Remarkably, a 50% reduction of GAG accumulation was achieved throughout the entire brain of males, which correlated with a partial improvement of the pathology of cerebellum and cortex. Liver-directed gene transfer expanded the lifespan of MPSIIIA males, underscoring the importance of reaching supraphysiological plasma levels of enzyme for maximal therapeutic benefit. These results show how liver-directed gene transfer can reverse somatic and ameliorate neurological pathology in MPSIIIA.


Human Molecular Genetics | 2015

Biochemical, Histological and Functional Correction of Mucopolysaccharidosis Type IIIB by Intra-cerebrospinal Fluid Gene Therapy

Albert Ribera; Virginia Haurigot; Miguel Angel López García; Sara Marcó; Sandra Motas; Pilar Villacampa; Luca Maggioni; Xavier León; Maria Molas; Victor Sanchez; Sergio Muñoz; Christian Leborgne; Xavier Moll; M. Pumarola; Federico Mingozzi; Jesús Ruberte; S. Añor; Fatima Bosch

Gene therapy is an attractive tool for the treatment of monogenic disorders, in particular for lysosomal storage diseases (LSD) caused by deficiencies in secretable lysosomal enzymes in which neither full restoration of normal enzymatic activity nor transduction of all affected cells are necessary. However, some LSD such as Mucopolysaccharidosis Type IIIB (MPSIIIB) are challenging because the diseases main target organ is the brain and enzymes do not efficiently cross the blood-brain barrier even if present at very high concentration in circulation. To overcome these limitations, we delivered AAV9 vectors encoding for α-N-acetylglucosaminidase (NAGLU) to the Cerebrospinal Fluid (CSF) of MPSIIIB mice with the disease already detectable at biochemical, histological and functional level. Restoration of enzymatic activity in Central Nervous System (CNS) resulted in normalization of glycosaminoglycan content and lysosomal physiology, resolved neuroinflammation and restored the pattern of gene expression in brain similar to that of healthy animals. Additionally, transduction of the liver due to passage of vectors to the circulation led to whole-body disease correction. Treated animals also showed reversal of behavioural deficits and extended lifespan. Importantly, when the levels of enzymatic activity were monitored in the CSF of dogs following administration of canine NAGLU-coding vectors to animals that were either naïve or had pre-existing immunity against AAV9, similar levels of activity were achieved, suggesting that CNS efficacy would not be compromised in patients seropositive for AAV9. Our studies provide a strong rationale for the clinical development of this novel therapeutic approach as the treatment for MPSIIIB.


Diabetes | 2013

In Vivo Adeno-Associated Viral Vector–Mediated Genetic Engineering of White and Brown Adipose Tissue in Adult Mice

Veronica Jimenez; Sergio Muñoz; Estefania Casana; Cristina Mallol; Ivet Elias; Claudia Jambrina; Albert Ribera; Tura Ferre; Sylvie Franckhauser; Fatima Bosch

Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.


Diabetes | 2013

Nonviral-Mediated Hepatic Expression of IGF-I Increases Treg Levels and Suppresses Autoimmune Diabetes in Mice

Xavier M. Anguela; Sabrina Tafuro; Carles Roca; David Callejas; Judith Agudo; Mercè Obach; Albert Ribera; Albert Ruzo; Christopher John Mann; Alba Casellas; Fatima Bosch

In type 1 diabetes, loss of tolerance to β-cell antigens results in T-cell–dependent autoimmune destruction of β cells. The abrogation of autoreactive T-cell responses is a prerequisite to achieve long-lasting correction of the disease. The liver has unique immunomodulatory properties and hepatic gene transfer results in tolerance induction and suppression of autoimmune diseases, in part by regulatory T-cell (Treg) activation. Hence, the liver could be manipulated to treat or prevent diabetes onset through expression of key genes. IGF-I may be an immunomodulatory candidate because it prevents autoimmune diabetes when expressed in β cells or subcutaneously injected. Here, we demonstrate that transient, plasmid-derived IGF-I expression in mouse liver suppressed autoimmune diabetes progression. Suppression was associated with decreased islet inflammation and β-cell apoptosis, increased β-cell replication, and normalized β-cell mass. Permanent protection depended on exogenous IGF-I expression in liver nonparenchymal cells and was associated with increased percentage of intrapancreatic Tregs. Importantly, Treg depletion completely abolished IGF-I-mediated protection confirming the therapeutic potential of these cells in autoimmune diabetes. This study demonstrates that a nonviral gene therapy combining the immunological properties of the liver and IGF-I could be beneficial in the treatment of the disease.


JCI insight | 2016

CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome)

Sandra Motas; Virginia Haurigot; Miguel Angel López García; Sara Marcó; Albert Ribera; Carles Roca; Xavier Sanchez; Victor Sanchez; Maria Molas; Joan Bertolin; Luca Maggioni; Xavier León; Jesús Ruberte; Fatima Bosch

Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment.


Journal of Biological Chemistry | 2013

Insulin-like Growth Factor I (IGF-I)-induced Chronic Gliosis and Retinal Stress Lead to Neurodegeneration in a Mouse Model of Retinopathy

Pilar Villacampa; Albert Ribera; Sandra Motas; Laura Ramírez; Miquel Garcia; Pedro de la Villa; Virginia Haurigot; Fatima Bosch

Background: In the retina, insulin-like growth factor I (IGF-I) is neuroprotective and essential for vasculature homeostasis. Results: Transgenic mice overexpressing Igf-I in the retina present chronic gliosis and retinal stress leading to neurodegeneration. Conclusion: IGF-I induces deleterious processes in the retina that, chronically, may overcome its neurotrophic properties. Significance: Increased intraocular IGF-I may contribute to the pathogenesis of conditions such as ischemic or diabetic retinopathies. Insulin-like growth factor I (IGF-I) exerts multiple effects on different retinal cell types in both physiological and pathological conditions. Despite the growth factors extensively described neuroprotective actions, transgenic mice with increased intraocular levels of IGF-I showed progressive impairment of electroretinographic amplitudes up to complete loss of response, with loss of photoreceptors and bipolar, ganglion, and amacrine neurons. Neurodegeneration was preceded by the overexpression of genes related to retinal stress, acute-phase response, and gliosis, suggesting that IGF-I altered normal retinal homeostasis. Indeed, gliosis and microgliosis were present from an early age in transgenic mice, before other alterations occurred, and were accompanied by signs of oxidative stress and impaired glutamate recycling. Older mice also showed overproduction of pro-inflammatory cytokines. Our results suggest that, when chronically increased, intraocular IGF-I is responsible for the induction of deleterious cellular processes that can lead to neurodegeneration, and they highlight the importance that this growth factor may have in the pathogenesis of conditions such as ischemic or diabetic retinopathy.

Collaboration


Dive into the Albert Ribera's collaboration.

Top Co-Authors

Avatar

Fatima Bosch

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Virginia Haurigot

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Pilar Villacampa

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jesús Ruberte

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sara Marcó

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sandra Motas

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Carles Roca

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Miquel Garcia

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Maria Molas

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Miguel Angel López García

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge