Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pilar Villacampa is active.

Publication


Featured researches published by Pilar Villacampa.


Journal of Clinical Investigation | 2013

Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy

Virginia Haurigot; Sara Marcó; Albert Ribera; Miguel Angel López García; Albert Ruzo; Pilar Villacampa; Eduard Ayuso; S. Añor; Anna Andaluz; Mercedes Pineda; Gemma García-Fructuoso; Maria Molas; Luca Maggioni; Sergio Muñoz; Sandra Motas; Jesús Ruberte; Federico Mingozzi; M. Pumarola; Fatima Bosch

For most lysosomal storage diseases (LSDs) affecting the CNS, there is currently no cure. The BBB, which limits the bioavailability of drugs administered systemically, and the short half-life of lysosomal enzymes, hamper the development of effective therapies. Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomic recessive LSD caused by a deficiency in sulfamidase, a sulfatase involved in the stepwise degradation of glycosaminoglycan (GAG) heparan sulfate. Here, we demonstrate that intracerebrospinal fluid (intra-CSF) administration of serotype 9 adenoassociated viral vectors (AAV9s) encoding sulfamidase corrects both CNS and somatic pathology in MPS IIIA mice. Following vector administration, enzymatic activity increased throughout the brain and in serum, leading to whole body correction of GAG accumulation and lysosomal pathology, normalization of behavioral deficits, and prolonged survival. To test this strategy in a larger animal, we treated beagle dogs using intracisternal or intracerebroventricular delivery. Administration of sulfamidase-encoding AAV9 resulted in transgenic expression throughout the CNS and liver and increased sulfamidase activity in CSF. High-titer serum antibodies against AAV9 only partially blocked CSF-mediated gene transfer to the brains of dogs. Consistently, anti-AAV antibody titers were lower in CSF than in serum collected from healthy and MPS IIIA-affected children. These results support the clinical translation of this approach for the treatment of MPS IIIA and other LSDs with CNS involvement.


Human Gene Therapy | 2012

Correction of pathological accumulation of glycosaminoglycans in central nervous system and peripheral tissues of MPSIIIA mice through systemic AAV9 gene transfer.

Albert Ruzo; Sara Marcó; Miquel Garcia; Pilar Villacampa; Albert Ribera; Eduard Ayuso; Lucca Maggioni; Federico Mingozzi; Virginia Haurigot; Fatima Bosch

Mucopolysaccharidosis type IIIA (MPSIIIA) is a rare lysosomal storage disorder caused by mutations in the sulfamidase gene. Accumulation of glycosaminoglycan (GAG) inside the lysosomes is associated with severe neurodegeneration as well as peripheral organ pathological changes leading to death of affected individuals during adolescence. There is no cure for MPSIIIA. Due to the limitation of the blood-brain barrier, enzyme replacement therapy and gene therapy strategies attempted thus far have not achieved whole-body correction of the disease. After the systemic administration of an adeno-associated virus 9 (AAV9) vector encoding for sulfamidase under the control of a ubiquitous promoter, we were able to obtain widespread expression of the therapeutic transgene in brain and in peripheral organs, and sulfamidase activity in serum of both male and female MPSIIIA mice. This was accompanied by the normalization of GAG storage levels in most peripheral organs. In brain, decrease in GAG tissue content following AAV9 gene transfer of sulfamidase was associated with the resolution of neuroinflammation. Finally, correction of disease phenotype resulted in a remarkable prolongation of survival of both male and female AAV-treated MPSIIIA mice. This proof-of-concept study will be relevant to the future development of therapies for MPSIIIA.


Journal of Biological Chemistry | 2009

Increased Intraocular Insulin-like Growth Factor-I Triggers Blood-Retinal Barrier Breakdown

Haurigot; Pilar Villacampa; Albert Ribera; Cristina Llombart; Assumpció Bosch; Nacher; David Ramos; Eduard Ayuso; Segovia Jc; Juan A. Bueren; Jesús Ruberte; Fatima Bosch

Blood-retinal barrier (BRB) breakdown is a key event in diabetic retinopathy and other ocular disorders that leads to increased retinal vascular permeability. This causes edema and tissue damage resulting in visual impairment. Insulin-like growth factor-I (IGF-I) is involved in these processes, although the relative contribution of increased systemic versus intraocular IGF-I remains controversial. Here, to elucidate the role of this factor in BRB breakdown, transgenic mice with either local or systemic elevations of IGF-I have been examined. High intraocular IGF-I, resulting from overexpression of IGF-I in the retina, increased IGF-I receptor content and signaling and led to accumulation of vascular endothelial growth factor. This was parallel to up-regulation of vascular Intercellular adhesion molecule I and retinal infiltration by bone marrow-derived microglial cells. These alterations resulted in increased vessel paracellular permeability to both low and high molecular weight compounds in IGF-I-overexpressing retinas and agreed with the loss of vascular tight junction integrity observed by electron microscopy and the altered junctional protein content. In contrast, mice with chronically elevated serum IGF-I did not show alterations in the retinal vasculature structure and permeability, indicating that circulating IGF-I cannot initiate BRB breakdown. Consistent with a key role of IGF-I signaling in retinal diseases, a strong up-regulation of the IGF-I receptor in human retinas with marked gliosis was also observed. Thus, this study demonstrates that intraocular IGF-I, but not systemic IGF-I, is sufficient to trigger processes leading to BRB breakdown and increased retinal vascular permeability. Therefore, therapeutic interventions designed to counteract local IGF-I effects may prove successful to prevent BRB disruption.


PLOS ONE | 2012

Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy.

Virginia Haurigot; Pilar Villacampa; Albert Ribera; Assumpció Bosch; David Ramos; Jesús Ruberte; Fatima Bosch

Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders.


Molecular Therapy | 2012

Liver Production of Sulfamidase Reverses Peripheral and Ameliorates CNS Pathology in Mucopolysaccharidosis IIIA Mice

Albert Ruzo; Miquel Garcia; Albert Ribera; Pilar Villacampa; Virginia Haurigot; Sara Marcó; Eduard Ayuso; Xavier M. Anguela; Carles Roca; Judith Agudo; David Ramos; Jesús Ruberte; Fatima Bosch

Mucopolysaccharidosis type IIIA (MPSIIIA) is an inherited lysosomal storage disease caused by deficiency of sulfamidase, resulting in accumulation of the glycosaminoglycan (GAG) heparan sulfate. It is characterized by severe progressive neurodegeneration, together with somatic alterations, which lead to death during adolescence. Here, we tested the ability of adeno-associated virus (AAV) vector-mediated genetic modification of either skeletal muscle or liver to revert the already established disease phenotype of 2-month-old MPSIIIA males and females. Intramuscular administration of AAV-Sulfamidase failed to achieve significant therapeutic benefit in either gender. In contrast, AAV8-mediated liver-directed gene transfer achieved high and sustained levels of circulating active sulfamidase, which reached normal levels in females and was fourfold higher in males, and completely corrected lysosomal GAG accumulation in most somatic tissues. Remarkably, a 50% reduction of GAG accumulation was achieved throughout the entire brain of males, which correlated with a partial improvement of the pathology of cerebellum and cortex. Liver-directed gene transfer expanded the lifespan of MPSIIIA males, underscoring the importance of reaching supraphysiological plasma levels of enzyme for maximal therapeutic benefit. These results show how liver-directed gene transfer can reverse somatic and ameliorate neurological pathology in MPSIIIA.


Human Molecular Genetics | 2015

Biochemical, Histological and Functional Correction of Mucopolysaccharidosis Type IIIB by Intra-cerebrospinal Fluid Gene Therapy

Albert Ribera; Virginia Haurigot; Miguel Angel López García; Sara Marcó; Sandra Motas; Pilar Villacampa; Luca Maggioni; Xavier León; Maria Molas; Victor Sanchez; Sergio Muñoz; Christian Leborgne; Xavier Moll; M. Pumarola; Federico Mingozzi; Jesús Ruberte; S. Añor; Fatima Bosch

Gene therapy is an attractive tool for the treatment of monogenic disorders, in particular for lysosomal storage diseases (LSD) caused by deficiencies in secretable lysosomal enzymes in which neither full restoration of normal enzymatic activity nor transduction of all affected cells are necessary. However, some LSD such as Mucopolysaccharidosis Type IIIB (MPSIIIB) are challenging because the diseases main target organ is the brain and enzymes do not efficiently cross the blood-brain barrier even if present at very high concentration in circulation. To overcome these limitations, we delivered AAV9 vectors encoding for α-N-acetylglucosaminidase (NAGLU) to the Cerebrospinal Fluid (CSF) of MPSIIIB mice with the disease already detectable at biochemical, histological and functional level. Restoration of enzymatic activity in Central Nervous System (CNS) resulted in normalization of glycosaminoglycan content and lysosomal physiology, resolved neuroinflammation and restored the pattern of gene expression in brain similar to that of healthy animals. Additionally, transduction of the liver due to passage of vectors to the circulation led to whole-body disease correction. Treated animals also showed reversal of behavioural deficits and extended lifespan. Importantly, when the levels of enzymatic activity were monitored in the CSF of dogs following administration of canine NAGLU-coding vectors to animals that were either naïve or had pre-existing immunity against AAV9, similar levels of activity were achieved, suggesting that CNS efficacy would not be compromised in patients seropositive for AAV9. Our studies provide a strong rationale for the clinical development of this novel therapeutic approach as the treatment for MPSIIIB.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report

Sidath Liyanage; Alessandro Fantin; Pilar Villacampa; Clemens A. Lange; Laura Denti; Enrico Cristante; Alexander J. Smith; Robin R. Ali; Ulrich F.O. Luhmann; James W. Bainbridge; Christiana Ruhrberg

Objective— Ocular neovascularization (ONV) is a pathological feature of sight-threatening human diseases, such as diabetic retinopathy and age-related macular degeneration. Macrophage depletion in mouse models of ONV reduces the formation of pathological blood vessels, and myeloid cells are widely considered an important source of the vascular endothelial growth factor A (VEGF). However, the importance of VEGF or its upstream regulators hypoxia-inducible factor-1&agr; (HIF1&agr;) and hypoxia-inducible factor-2&agr; (HIF2&agr;) as myeloid-derived regulators of ONV remains to be determined. Approach and Results— We used 2 mouse models of ONV, choroidal neovascularization and oxygen-induced retinopathy, to show that Vegfa is highly expressed by several cell types, but not myeloid cells during ONV. Moreover, myeloid-specific VEGF ablation did not reduce total ocular VEGF during choroidal neovascularization or oxygen-induced retinopathy. In agreement, the conditional inactivation of Vegfa, Hif1a, or Epas1 in recruited and resident myeloid cells that accumulated at sites of neovascularization did not significantly reduce choroidal neovascularization or oxygen-induced retinopathy. Conclusions— The finding that myeloid cells are not a significant local source of VEGF in these rodent models of ONV suggests that myeloid function in neovascular eye disease differs from skin wound healing and other neovascular pathologies.


Journal of Biological Chemistry | 2013

Insulin-like Growth Factor I (IGF-I)-induced Chronic Gliosis and Retinal Stress Lead to Neurodegeneration in a Mouse Model of Retinopathy

Pilar Villacampa; Albert Ribera; Sandra Motas; Laura Ramírez; Miquel Garcia; Pedro de la Villa; Virginia Haurigot; Fatima Bosch

Background: In the retina, insulin-like growth factor I (IGF-I) is neuroprotective and essential for vasculature homeostasis. Results: Transgenic mice overexpressing Igf-I in the retina present chronic gliosis and retinal stress leading to neurodegeneration. Conclusion: IGF-I induces deleterious processes in the retina that, chronically, may overcome its neurotrophic properties. Significance: Increased intraocular IGF-I may contribute to the pathogenesis of conditions such as ischemic or diabetic retinopathies. Insulin-like growth factor I (IGF-I) exerts multiple effects on different retinal cell types in both physiological and pathological conditions. Despite the growth factors extensively described neuroprotective actions, transgenic mice with increased intraocular levels of IGF-I showed progressive impairment of electroretinographic amplitudes up to complete loss of response, with loss of photoreceptors and bipolar, ganglion, and amacrine neurons. Neurodegeneration was preceded by the overexpression of genes related to retinal stress, acute-phase response, and gliosis, suggesting that IGF-I altered normal retinal homeostasis. Indeed, gliosis and microgliosis were present from an early age in transgenic mice, before other alterations occurred, and were accompanied by signs of oxidative stress and impaired glutamate recycling. Older mice also showed overproduction of pro-inflammatory cytokines. Our results suggest that, when chronically increased, intraocular IGF-I is responsible for the induction of deleterious cellular processes that can lead to neurodegeneration, and they highlight the importance that this growth factor may have in the pathogenesis of conditions such as ischemic or diabetic retinopathy.


Human Molecular Genetics | 2017

Disease correction by AAV-mediated gene therapy in a new mouse model of mucopolysaccharidosis type IIID

Carles Roca; Sandra Motas; Sara Marcó; Albert Ribera; Victor Sanchez; Xavier Sanchez; Joan Bertolin; Xavier León; Jennifer Pérez; Miguel Angel López García; Pilar Villacampa; Jesús Ruberte; Anna Pujol; Virginia Haurigot; Fatima Bosch

Gene therapy is a promising therapeutic alternative for Lysosomal Storage Disorders (LSD), as it is not necessary to correct the genetic defect in all cells of an organ to achieve therapeutically significant levels of enzyme in body fluids, from which non-transduced cells can uptake the protein correcting their enzymatic deficiency. Animal models are instrumental in the development of new treatments for LSD. Here we report the generation of the first mouse model of the LSD Muccopolysaccharidosis Type IIID (MPSIIID), also known as Sanfilippo syndrome type D. This autosomic recessive, heparan sulphate storage disease is caused by deficiency in N-acetylglucosamine 6-sulfatase (GNS). Mice deficient in GNS showed lysosomal storage pathology and loss of lysosomal homeostasis in the CNS and peripheral tissues, chronic widespread neuroinflammation, reduced locomotor and exploratory activity and shortened lifespan, a phenotype that closely resembled human MPSIIID. Moreover, treatment of the GNS-deficient animals with GNS-encoding adeno-associated viral (AAV) vectors of serotype 9 delivered to the cerebrospinal fluid completely corrected pathological storage, improved lysosomal functionality in the CNS and somatic tissues, resolved neuroinflammation, restored normal behaviour and extended lifespan of treated mice. Hence, this work represents the first step towards the development of a treatment for MPSIIID.


Current Neurovascular Research | 2015

Proliferative retinopathies: animal models and therapeutic opportunities.

Pilar Villacampa; Virginia Haurigot; Fatima Bosch

Proliferative retinopathies are the leading causes of blindness in Western societies. The development of new, more efficacious treatments that take advantage of recent advances in the fields of gene and cell therapy requires further investigations on the mechanisms underlying disease onset and progression, and adequate animal models that recapitulate the pathogenesis of human proliferative retinopathy and allow evaluation of the long-term therapeutic benefits that these therapies can offer. Unfortunately, most models of retinal neovascularization have short-term evolution and diabetic rodents show a very mild retinal phenotype, limited to non-proliferative changes, and do not develop proliferative retinopathy at all. Transgenic mice overexpressing Insulin-like Growth Factor-I (IGF-I) in the retina (TgIGF-I) constitute the only rodent model currently available that develops most of the retinal alterations observed in diabetic eyes, with a temporal evolution that resembles that of the human disease. TgIGF-I have retinal vascular alterations that progress as animals age from non-proliferative to proliferative disease, making these mice an excellent model of proliferative retinopathy that, due to its slow progression, allows long-term evaluation of novel antiangiogenic therapies. At the molecular level, transgenic retinas recapitulate a variety of changes that are also observed in diabetic retinas, which reinforces the validity of this model. In addition to vascular and glial alterations, Tg-IGF-I mice show progressive neurodegeneration that leads to blindness in old animals. Thus, TgIGF-I are a useful model for testing the long-term efficacy and safety of innovative antiangiogenic, glial-modulating and neuroprotective therapies for the treatment of diabetic retinopathy and other retinal proliferative disorders.

Collaboration


Dive into the Pilar Villacampa's collaboration.

Top Co-Authors

Avatar

Fatima Bosch

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Albert Ribera

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Virginia Haurigot

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jesús Ruberte

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sara Marcó

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sandra Motas

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Miguel Angel López García

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Miquel Garcia

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carles Roca

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge