Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert Ricken is active.

Publication


Featured researches published by Albert Ricken.


Journal of Biological Chemistry | 2011

Altered Immune Response in Mice Deficient for the G Protein-coupled Receptor GPR34

Ines Liebscher; Uwe Müller; Daniel Teupser; Eva Engemaier; Kathrin M. Engel; Lars Ritscher; Doreen Thor; Katrin Sangkuhl; Albert Ricken; Antje Wurm; Daniel Piehler; Sandra Schmutzler; Herbert Fuhrmann; Frank W. Albert; Andreas Reichenbach; Joachim Thiery; Torsten Schöneberg; Angela Schulz

The X-chromosomal GPR34 gene encodes an orphan Gi protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges.


Cancer Research | 2010

α2-Macroglobulin Inhibits the Malignant Properties of Astrocytoma Cells by Impeding β-Catenin Signaling

Inge Lindner; Nasr Y. A. Hemdan; Martin Buchold; Klaus Huse; Marina Bigl; Ilka Oerlecke; Albert Ricken; Frank Gaunitz; Ulrich Sack; Andreas Naumann; Margrit Hollborn; Dietmar R. Thal; Rolf Gebhardt; Gerd Birkenmeier

Targets that could improve the treatment of brain tumors remain important to define. This study of a transformation-associated isoform of alpha2-macroglobulin (A2M*) and its interaction with the low-density lipoprotein receptor-related protein-1 (LRP1) suggests a new mechanism for abrogating the malignant potential of astrocytoma cells. LRP1 bound A2M* found to be associated with an inhibition of tumor cell proliferation, migration, invasion, spheroid formation, and anchorage-independent growth. Transcriptional studies implicated effects on the Wnt/beta-catenin signaling pathway. Notably, LRP1 antibodies could phenocopy the effects of A2M*. Our findings suggest a pathway of tumor suppression in astrocytoma that might be tractable to therapeutic exploitation.


Histochemistry and Cell Biology | 1995

Cytokeratin expression in bovine corpora lutea

Albert Ricken; Katharina Spanel-Borowski; Markus Saxer; Peter R. Huber

Cytokeratin (CK)-positive cells were obtained from bovine corpora lutea. When cultured, these cells behave like CK-positive endothelial cells obtained from bovine large blood vessels. The origin of CK-positive cells has now been studied in 45 bovine corpora lutea of different estrous cycle stages. Additionally, 7 corpora lutea of pregnant cows were examined. The tissues were grouped into early stage (days 2 to 4), secretory stage (days 5 to 17) and late stage (days 18 to 21) according to gross morphology, wet weight and total progesterone content. One portion of a corpus luteum was used for immunohistochemistry, and another for Western blot analysis. Twenty-six of the 45 corpora lutea showed CK expression, as confirmed by immunostaining and Western blotting. Cytokeratin expression was found in all corporalutea from the early stage, in 14 of 26 corpora lutea from the secretory stage, and 3 of 10 from the late stage. Early stage corpora lutea displayed “zonation” such that a high number of CK-positive luteal cells occurred in the region of the previous granulosa layer and a very low number in the previous thecal layer. Secretory CK-positive corpora lutea showed uniformly distributed, predominantly large luteal cells. In secretory corpora lutea of group A, CK-positive cells and a distinct microvascular tree were seen, the latter visualized by factor VIII-related antigen immunolabelling of endothelial cells. Group B showed none or very few CK-positive cells. Corpora lutea of pregnant cows behaved like corpora lutea of group B. Roughly 1% of CK-positive cells closely associated with the capillary wall were sometimes reminiscent of endothelial cell sprouts.


Journal of Neuroscience Research | 2010

Oxidized low-density lipoprotein (oxLDL)-induced cell death in dorsal root gangion cell cultures depends not on the lectin-like oxLDL receptor-1 but on the toll-like receptor-4

Marcin Nowicki; Kerstin Müller; Heike Serke; Joanna Kosacka; Constanze Vilser; Albert Ricken; Katharina Spanel-Borowski

DRG cells have been found to undergo apoptosis and necrosis after oxidized low‐density lipoprotein (oxLDL) stimulation in vitro. However, the mechanism of oxLDL‐induced DRG cell death is unclear. For this reason, we studied the expression of two potential oxLDL receptors: lectin‐like oxidized low‐density lipoprotein receptor‐1 (LOX‐1) and toll‐like receptor‐4 (TLR4) in dorsal root ganglion (DRG) cell cultures from postnatal rats. Cells were cultivated with and without oxLDL. In oxLDL‐treated DRG cell cultures, the increase of cleaved caspase‐3 protein was observed as a sign of enhanced apoptosis. Untreated and oxLDL‐treated DRG cell cultures expressed LOX‐1 and TLR4 at similar levels. The LOX‐1 expression remained unchanged after receptor blockade. However, the inhibition of LOX‐1 caused a significant increase of cleaved caspase‐3 and a decrease of TLR4 levels. The TLR4‐inhibited DRG cell cultures lacked changes in LOX‐1 expression for all experimental groups. The inhibition of TLR4 caused activation of jun N‐terminal kinase (JNK) and a significant decrease of cleaved caspase‐3 but did not change the TLR4 level. We conclude that LOX‐1 and TLR4 are expressed in cultivated rat DRG cells and that the oxLDL‐induced cell death in DRG cell cultures does not depend on the LOX‐1 but on the TLR4.


Journal of Vascular Research | 2007

The Short Prolactin Receptor Predominates in Endothelial Cells of Micro- and Macrovascular Origin

Albert Ricken; Anja Traenkner; Claudia Merkwitz; Katja Hummitzsch; Jens Grosche; Katharina Spanel-Borowski

Background: Controversial reports on prolactin receptors (PRL-R), the long and short form, on endothelial cells (EC) may be explained by the choice of EC derived from the micro- and macrovascular bed of either endocrine and non-endocrine organs. Methods: We studied here PRL-R expression in organs [bovine corpus luteum (CL), umbilical vein, aorta] and in organ-derived EC cultures. Results: In the intact CL, both PRL-R forms were present at mRNA and protein level throughout the oestrous cycle stages. The short form prevailed as protein. PRL-R-positive EC were noted by immunofluorescent staining in arterial blood vessels of CL septa, in the umbilical vein and the aorta. In EC cultures of micro- and macrovascular origin, transcripts of both PRL-R forms were shown; again the short-form protein prevailed. Blocking experiments with anti-prolactin (PRL) antibody led to a 60% decrease in cell growth. Treatment with PRL had no effect. Conclusion: PRL-R expression in micro- and macrovascular EC is associated with the predominant short form.


Reproductive Biology and Endocrinology | 2009

Reduction in corpora lutea number in obese melanocortin-4-receptor-deficient mice

Mara Sandrock; Angela Schulz; Claudia Merkwitz; Torsten Schöneberg; Katharina Spanel-Borowski; Albert Ricken

Obese melanocortin-4-receptor-deficient (MC4R-/-) male mice are reported to have erectile dysfunction, while homozygous MC4R-/- female mice are apparently fertile. A recently established obese mouse strain, carrying an inactivating mutation in the MC4R gene, revealed difficulties in breeding for the homozygous female mice. This prompted us to determine the presence of follicles and corpora lutea (CL) in ovaries of MC4R-/- mice aged 3–6 months in comparison to wild type (MC4R+/+) littermates. Serial sections of formaldehyde-fixed ovaries of mice with vaginal signs of estrus and metestrus were assessed for the number of healthy and regressing follicles and CL. The number of CL, as an estimate for the ovulation rate, decreased to zero during aging in MC4R-/- mice. The number of small- (diameter 100–200 micrometer) and large-sized follicles namely antral follicles (diameter >200 micrometer) were slightly increased in MC4R-/- compared to MC4R+/+ mice. Greater differences were found in very large to cystic follicles, which were more numerous in MC4R-/- mice. The number of regressing antral follicles was higher in the MC4R-/- group compared to the MC4R+/+ group. This was associated with a wide range in the number of collapsed zonae pellucidae as the last remnants of regressed follicles. A conspicuous hypertrophy of the interstitial cells was noted in 6-month-old MC4R-/- mice. In conclusion, cystic follicles and the reduction in CL number point to a decreased ovulation rate in obese MC4R-/- mice.


Progress in Histochemistry and Cytochemistry | 2011

Expression of KIT in the ovary, and the role of somatic precursor cells.

Claudia Merkwitz; Paul Lochhead; Nika Tsikolia; Daniela Koch; Katja Sygnecka; Michiharu Sakurai; Katharina Spanel-Borowski; Albert Ricken

KIT is a type III receptor protein tyrosine kinase, and KITL its cognate ligand. KIT can mediate its effects via several intracellular signalling pathways, or by formation of a cell-cell anchor with its ligand. Through these mechanisms, KIT controls fundamental cellular processes, including migration, proliferation, differentiation and survival. These cellular processes are modulated by soluble KIT, a cleavage product of KIT, generated at the cell membrane. A cell-retained KIT cleavage fragment also arises from this cleavage event. This cleavage fragment must be distinguished from truncated KIT (trKIT), which originates through cryptic promoter usage. The expression of trKIT is highly restricted to postmeiotic germ cells in the testis. In contrast, KIT, together with its cleavage products, is present in somatic cells and germ cells in the gonads of both sexes. A functional KITL/KIT system is mandatory for normal population of the gonads by germ cells. Signalling via the KITL/KIT system promotes the growth, maturation, and survival of germ cells within the gonads, and prevents meiotic entry and progression. In addition to its importance in germ cell biology, the KITL/KIT system is crucial for gonadal stromal differentiation. During foetal life, KIT is expressed by testicular stromal precursor cells, which develop into Leydig cells. In the ovary, stromal cell KIT expression accompanies theca layer development around advanced follicles. After ovulation, KIT-immunopositive cells translocate from the theca layer to the luteal ganulosa where they contribute to a delicate cellular network that extends between the fully luteinised large luteal cells. In the outer regions of the developing corpus luteum, a highly conspicuous subpopulation of KIT/CD14-double-immunopositive cells can be observed. KIT/CD14-double-immunopositive cells are also seen in the haematopoietic-like colonies of long-term granulosa cultures established from late antral follicles. These cultures demonstrate expression of pluripotency marker genes such as octamer binding transcription factor-3/4 and sex determining region Y-box 2. The KIT/CD14-double-immunopositive cells can be purified and enriched by KIT-immunopositive magnetic cell sorting. Subsequent exposure of the KIT-expressing cells to the hanging drop culture method, combined with haematopoietic differentiation medium, provides the signals necessary for their differentiation into endothelial and steroidogenic cells. This suggests that monocyte-derived multipotent cells are involved in ovarian tissue remodelling. In summary, multicelluar KITL/KIT signalling organizes the stroma in the ovary and testis; monocyte-derived multipotent cells may be involved.


Journal of Biological Chemistry | 2014

The G Protein-coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice

Jaroslawna Meister; Diana Le Duc; Albert Ricken; Ralph Burkhardt; Joachim Thiery; Helga Pfannkuche; Tobias Polte; Johannes Grosse; Torsten Schöneberg; Angela Schulz

Background: The relevance of the widely expressed GPCR P2Y14 is only partially understood. Results: Analysis of P2Y14-KO mice revealed decreased gastrointestinal emptying, reduced glucose tolerance, and insulin release. Conclusion: P2Y14 function is required for proper intestine emptying and adequate glucose response. Significance: P2Y14 plays a role in smooth muscle function and maintaining energy homeostasis by influencing insulin release. UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion.


European Journal of Cell Biology | 2008

Inflammatory cytokines increase extracellular procathepsin D in permanent and primary endothelial cell cultures

Sabine Erdmann; Albert Ricken; Katja Hummitzsch; Claudia Merkwitz; Nicole Schliebe; Frank Gaunitz; Rainer Strotmann; Katharina Spanel-Borowski

The protease cathepsin D (Cath D) and its proteolytically inactive proform, procathepsin D (ProCath D), turned out to be multifunctional within and outside the cell. Elevated levels of ProCath D occur in malignant tumors and in organs under chronic inflammation. One important source for this increase of ProCath D might be endothelial cells. Here we examined the expression of Cath D in the human endothelial cell line EA.hy 926 and in primary endothelial cells isolated from human umbilical cord veins (HUVEC). After serum-free incubation with or without human interferon-gamma (hIFN-gamma) and/or human tumor necrosis factor-alpha (hTNF-alpha) immature and mature Cath D forms were examined in cell extracts and in cell-conditioned medium concentrates by Western blotting. Lysates of EA.hy 926 cells as well as of HUVEC contained active Cath D as two-chain form, but only negligible amounts of ProCath D and Cath D intermediates. Yet both endothelial cell cultures accumulated ProCath D in their conditioned media in the absence of any stimulus. The treatment with hIFN-gamma and/or hTNF-alpha had little effect on intracellular levels of Cath D, whereas the cytokine stimulation increased the extracellular presence of ProCath D in both endothelial cell cultures. The extracellular increase of ProCath D was not related to induction of apoptosis, as validated by cleaved caspase-3 in cell lysates. Acidification of cytokine-treated media converted ProCath D into Cath D, which was associated with cathepsin-like activity using a fluorogenic substrate-linked assay. We conclude, in vitro, endothelial cells are a cytokine-dependent source for extracellular ProCath D.


Reproduction | 2007

KIT receptor-positive cells in the bovine corpus luteum are primarily theca-derived small luteal cells

Katharina Spanel-Borowski; Kristina Sass; Sabine Löffler; Elke Brylla; Michiharu Sakurai; Albert Ricken

The tyrosine kinase KIT receptor, the protooncogene CD117, plays a key role in growth and maturation of oocytes and follicles. Relevant data are sparse for the corpus luteum (CL). We first confirmed the presence of KIT mRNA and KIT protein in bovine CL homogenates. We then localized KIT-positive (KIT+) cells in CL sections by immunohistochemistry. At the CL stage of early development, the former theca transforming into capsule/septa showed a strong band-like KIT+ immunoresponse. In addition, CD45+ leukocytes in septa included subpopulations of CD45+/KIT+ and CD14+/KIT+ leukocytes as validated by double immunofluorescence localization. At the early secretory stage, KIT+ cells appeared within the septa/capsule region and in the periphery of the CL parenchyma, there forming a complex network. This was separate from the capillary bed as determined by double staining for CD117 and FVIII-related endothelial cell antigen (FVIIIr). The KIT+ network coincided with cells positive for cytochrome P450 17alpha-hydroxylase, a thecal cell-specific enzyme. The late secretory stage was defined by an advanced manifestation of the KIT+ network in the CL periphery. At the stage of regression, the KIT+ network was absent. The CL of pregnancy expressed high levels of KIT mRNA and KIT protein uniformly throughout pregnancy. The KIT+ immunolocalization revealed small fibroblast-like cells, luteal cells with granules, and clusters of large luteal cells with staining of the cell membrane. We conclude that a majority of KIT+ cells in the bovine CL are primarily theca-derived small luteal cells, and that a minority represent KIT+ leukocytes, in some cases KIT+ monocytes.

Collaboration


Dive into the Albert Ricken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge