Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rolf Gebhardt is active.

Publication


Featured researches published by Rolf Gebhardt.


Brain Research | 1993

Glycogen in astrocytes : possible function as lactate supply for neighboring cells

Ralf Dringen; Rolf Gebhardt; Bernd Hamprecht

In order to contribute to the elucidation of the function of astrocyte glycogen in brain, studies on the fate of the glucosyl residues of glycogen were carried out on astroglia-rich primary cultures derived from the brains of newborn rats. On glucose deprivation astroglial cells rapidly deplete their glycogen. In contrast to the situation with hepatocytes, only lactate, but not glucose, is detectable in the medium surrounding the astroglial cells. Besides glucose, astroglial cultures can also use mannose as a substrate for the synthesis of glycogen and the generation of lactate. Although mannose-fed astroglial cells contain glucose-6-phosphate, they do not release a measurable amount of glucose into the culture medium. Instead of glucose the astroglial cells release high amounts of lactate into the culture medium. Gluconolactone or 2-deoxyglucose which prevent glycogen breakdown in astroglial cells after glucose deprivation, allow to discriminate between lactate generated from glycogen and lactate from other sources. The amount of lactate found in the medium in the absence of gluconolactone (or 2-deoxyglucose) exceeds the amount found in the presence of either compound by the lactate equivalents calculated to be contained in the cellular glycogen. In conclusion, glycogen in astrocytes can be considered as a store for lactate rather than for glucose.


Pharmacology & Therapeutics | 1992

Metabolic zonation of the liver: Regulation and implications for liver function

Rolf Gebhardt

Liver parenchyma shows a remarkable heterogeneity of the hepatocytes along the porto-central axis with respect to ultrastructure and enzyme activities resulting in different cellular functions within different zones of the liver lobuli. According to the concept of metabolic zonation, the spatial organization of the various metabolic pathways and functions forms the basis for the efficient adaptation of liver metabolism to the different nutritional requirements of the whole organism in different metabolic states. The present review summarizes current knowledge about this heterogeneity, its development and determination, as well as about its significance for the understanding of all aspects of liver function and pathology, especially of intermediary metabolism, biotransformation of drugs and zonal toxicity of hepatotoxins.


Drug Metabolism Reviews | 2003

New Hepatocyte In Vitro Systems for Drug Metabolism: Metabolic Capacity and Recommendations for Application in Basic Research and Drug Development, Standard Operation Procedures

Rolf Gebhardt; Jan G. Hengstler; Dieter Müller; R. Glöckner; Peter Buenning; Britta Laube; Eva Schmelzer; Martina Ullrich; Dietmar Utesch; Nicola J. Hewitt; Michael Ringel; Beate Reder Hilz; Augustinus Bader; Angelika Langsch; Thomas Koose; Hans-Jörg Burger; Jochen Maas; Franz Oesch

Primary hepatocytes represent a well-accepted in vitro cell culture system for studies of drug metabolism, enzyme induction, transplantation, viral hepatitis, and hepatocyte regeneration. Recently, a multicentric research program has been initiated to optimize and standardize new in vitro systems with hepatocytes. In this article, we discuss five of these in vitro systems: hepatocytes in suspension, perifusion culture systems, liver slices, co-culture systems of hepatocytes with intestinal bacteria, and 96-well plate bioreactors. From a technical point of view, freshly isolated or cryopreserved hepatocytes in suspension represent a readily available and easy-to-handle in vitro system that can be used to characterize the metabolism of test substances. Hepatocytes in suspension correctly predict interspecies differences in drug metabolism, which is demonstrated with pantoprazole and propafenone. A limitation of the hepatocyte suspensions is the length of the incubation period, which should not exceed 4 hr. This incubation period is sufficiently long to determine the metabolic stability and to allow identification of the main metabolites of a test substance, but may be too short to allow generation of some minor, particularly phase II metabolites, that contribute less than 3% to total metabolism. To achieve longer incubation periods, hepatocyte culture systems or bioreactors are used. In this research program, two bioreactor systems have been optimized: the perifusion culture system and 96-well plate bioreactors. The perifusion culture system consists of collagen-coated slides allowing the continuous superfusion of a hepatocyte monolayer with culture medium as well as establishment of a constant atmosphere of 13% oxygen, 82% nitrogen, and 5% CO2. This system is stable for at least 2 weeks and guarantees a remarkable sensitivity to enzyme induction, even if weak inducers are tested. A particular advantage of this system is that the same bioreactor can be perfused with different concentrations of a test substance in a sequential manner. The 96-well plate bioreactor runs 96 modules in parallel for pharmacokinetic testing under aerobic culture conditions. This system combines the advantages of a three-dimensional culture system in collagen gel, controlled oxygen supply, and constant culture medium conditions, with the possibility of high throughput and automatization. A newly developed co-culture system of hepatocytes with intestinal bacteria offers the possibility to study the metabolic interaction between liver and intestinal microflora. It consists of two chambers separated by a permeable polycarbonate membrane, where hepatocytes are cultured under aerobic and intestinal bacteria in anaerobic conditions. Test substances are added to the aerobic side to allow their initial metabolism by the hepatocytes, followed by the metabolism by intestinal bacteria at the anaerobic side. Precision-cut slices represent an alternative to isolated hepatocytes and have been used for the investigation of hepatic metabolism, hepatotoxicity, and enzyme induction. A specific advantage of liver slices is the possibility to study toxic effects on hepatocytes that are mediated or modified by nonparenchymal cells (e.g., by cytokine release from Kupffer cells) because the physiological liver microarchitecture is maintained in cultured slices. For all these in vitro systems, a prevalidation has been performed using standard assays for phase I and II enzymes. Representative results with test substances and recommendations for application of these in vitro systems, as well as standard operation procedures are given.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration

Stefan Hoehme; Marc Brulport; Alexander Bauer; Essam Bedawy; Wiebke Schormann; Matthias Hermes; Verena Puppe; Rolf Gebhardt; Sebastian Zellmer; Michael Schwarz; Ernesto Bockamp; Tobias Timmel; Jan G. Hengstler; Dirk Drasdo

Only little is known about how cells coordinately behave to establish functional tissue structure and restore microarchitecture during regeneration. Research in this field is hampered by a lack of techniques that allow quantification of tissue architecture and its development. To bridge this gap, we have established a procedure based on confocal laser scans, image processing, and three-dimensional tissue reconstruction, as well as quantitative mathematical modeling. As a proof of principle, we reconstructed and modeled liver regeneration in mice after damage by CCl4, a prototypical inducer of pericentral liver damage. We have chosen the regenerating liver as an example because of the tight link between liver architecture and function: the complex microarchitecture formed by hepatocytes and microvessels, i.e. sinusoids, ensures optimal exchange of metabolites between blood and hepatocytes. Our model captures all hepatocytes and sinusoids of a liver lobule during a 16 days regeneration process. The model unambiguously predicted a so-far unrecognized mechanism as essential for liver regeneration, whereby daughter hepatocytes align along the orientation of the closest sinusoid, a process which we named “hepatocyte-sinusoid alignment” (HSA). The simulated tissue architecture was only in agreement with the experimentally obtained data when HSA was included into the model and, moreover, no other likely mechanism could replace it. In order to experimentally validate the model of prediction of HSA, we analyzed the three-dimensional orientation of daughter hepatocytes in relation to the sinusoids. The results of this analysis clearly confirmed the model prediction. We believe our procedure is widely applicable in the systems biology of tissues.


American Journal of Pathology | 2010

Tubular Overexpression of Transforming Growth Factor-β1 Induces Autophagy and Fibrosis but Not Mesenchymal Transition of Renal Epithelial Cells

Robert Koesters; Brigitte Kaissling; Michel LeHir; Nicolas Picard; Franziska Theilig; Rolf Gebhardt; Adam B. Glick; Brunhilde Hähnel; Hiltraud Hosser; Hermann Josef Gröne; Wilhelm Kriz

We recently showed in a tetracycline-controlled transgenic mouse model that overexpression of transforming growth factor (TGF)-beta1 in renal tubules induces widespread peritubular fibrosis and focal degeneration of nephrons. In the present study we have analyzed the mechanisms underlying these phenomena. The initial response to tubular cell-derived TGF-beta1 consisted of a robust proliferation of peritubular cells and deposition of collagen. On sustained expression, nephrons degenerated in a focal pattern. This process started with tubular dedifferentiation and proceeded to total decomposition of tubular cells by autophagy. The final outcome was empty collapsed remnants of tubular basement membrane embedded into a dense collagenous fibrous tissue. The corresponding glomeruli survived as atubular remnants. Thus, TGF-beta1 driven autophagy may represent a novel mechanism of tubular decomposition. The fibrosis seen in between intact tubules and in areas of tubular decomposition resulted from myofibroblasts that were derived from local fibroblasts. No evidence was found for a transition of tubular cells into myofibroblasts. Neither tracing of injured tubules in electron micrographs nor genetic tagging of tubular epithelial cells revealed cells transgressing the tubular basement membrane. In conclusion, overexpression of TGF-beta1 in renal tubules in vivo induces interstitial proliferation, tubular autophagy, and fibrosis, but not epithelial-to-mesenchymal transition.


Gastroenterology | 2008

Hepatocyte-Specific Smad7 Expression Attenuates TGF-β–Mediated Fibrogenesis and Protects Against Liver Damage

Steven Dooley; Jafar Hamzavi; L. Ciuclan; Patricio Godoy; Iryna Ilkavets; Sabrina Ehnert; Elke Ueberham; Rolf Gebhardt; Stephan Kanzler; Andreas Geier; Katja Breitkopf; Honglei Weng; Peter R. Mertens

BACKGROUND & AIMS The profibrogenic role of transforming growth factor (TGF)-beta in liver has mostly been attributed to hepatic stellate cell activation and excess matrix synthesis. Hepatocytes are believed to contribute to increased rates of apoptosis. METHODS Primary hepatocyte outgrowths and AML12 cells were used as an in vitro model to detect TGF-beta effects on the cellular phenotype and expression profile. Furthermore, a transgenic mouse model was used to determine the outcome of hepatocyte-specific Smad7 expression on fibrogenesis following CCl(4)-dependent damage. Samples from patients with chronic liver diseases were assessed for (partial) epithelial-to-mesenchymal transition (EMT) in hepatocytes. RESULTS In primary cell cultures and in vivo, the majority of hepatocytes survive despite activated TGF-beta signaling. These cells display phenotypic changes and express proteins characteristic for (partial) EMT and fibrogenesis. Experimental expression of Smad7 in hepatocytes of mice attenuated TGF-beta signaling and EMT, resulted in less accumulation of interstitial collagens, and improved CCl(4)-provoked liver damage and fibrosis scores compared with controls. CONCLUSIONS The data indicate that hepatocytes undergo TGF-beta-dependent EMT-like phenotypic changes and actively participate in fibrogenesis. Furthermore, ablation of TGF-beta signaling specifically in this cell type is sufficient to blunt the fibrogenic response.


Lipids | 1996

DIFFERENTIAL INHIBITORY EFFECTS OF GARLIC-DERIVED ORGANOSULFUR COMPOUNDS ON CHOLESTEROL BIOSYNTHESIS IN PRIMARY RAT HEPATOCYTE CULTURES

Rolf Gebhardt; Halgund Beck

Using primary rat hepatocyte cultures, the potency of several garlic-derived organosulfur compounds to inhibit cholesterol biosynthesisin toto as well as at early and late steps of this metabolic pathway was compared. Concerning early steps, allicin significantly inhibited incorporation of [14C]acetate into nonsaponifiable neutral lipids already at concentrations as low as 10 µM, while diallyl disulfide and allyl mercaptan were effective above 100 µM only. Likewise, inhibition in response to the two vinyl-dithiins started at 500 µM. If [14C]acetate was replaced by [14C]mevalonate, inhibition due to allicin, diallyl disulfide, and allyl mercaptan disappeared suggesting that HMGCoA-reductase was the target of inhibition. In contrast, for the vinyl-dithiins a stimulation of mevalonate incorporation was found. Concerning the late step, the potency to exert accumulation of lanosterol presumably by inhibiting lanosterol 14α-demethylase decreased in the order allicin>diallyl disulfide>allyl mercaptan=1,3-vinyl-dithiin≫1,2-vinyldithiin, the effect of the latter compound being close to zero. With respect to the total inhibition of [14C]acetate labeling of cholesterol, the half-maximal effective concentration-value of allicin was determined to be 17±2 µM compared to 64±7 µM for diallyl disulfide and to 450±20 µM for allyl mercaptan. Cytotoxicity as determined by the lactate dehydrogenase leakage assay was slightly higher for the two vinyl-dithiins than for diallyl disulfide and allyl mercaptan, but was apparent only at concentrations higher than 10 mM and, consequently, was irrelevant for the effects described. These results demonstrate that different garlic-derived organosulfur compounds interfere differently with cholesterol biosynthesis and, thus, may provoke multiple inhibition of this metabolic pathway in response to garlic consumption. The fact that allicin was the most effective inhibitor argues against the possibility that its degradation products, namely diallyl disulfide or allyl mercapatan, might mediate its effects, a possibility that might be true, however, in the case of the vinyl-dithiins.


Nature Cell Biology | 2012

Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy

Kristan E. van der Vos; Pernilla Eliasson; Tassula Proikas-Cezanne; Stephin J. Vervoort; Ruben van Boxtel; Marrit Putker; Iris J. van Zutphen; Mario Mauthe; Sebastian Zellmer; Cornelieke Pals; Liesbeth P. Verhagen; Marian J. A. Groot Koerkamp; A. Koen Braat; Tobias B. Dansen; Frank C. P. Holstege; Rolf Gebhardt; Boudewijn M.T. Burgering; Paul J. Coffer

The PI(3)K–PKB–FOXO signalling network provides a major intracellular hub for the regulation of cell proliferation, survival and stress resistance. Here we report an unexpected role for FOXO transcription factors in regulating autophagy by modulating intracellular glutamine levels. To identify transcriptional targets of this network, we performed global transcriptional analyses after conditional activation of the key components PI(3)K, PKB/Akt, FOXO3 and FOXO4. Using this pathway approach, we identified glutamine synthetase as being transcriptionally regulated by PI(3)K–PKB–FOXO signalling. Conditional activation of FOXO also led to an increased level of glutamine production. FOXO activation resulted in mTOR inhibition by preventing the translocation of mTOR to lysosomal membranes in a glutamine-synthetase-dependent manner. This resulted in an increased level of autophagy as measured by LC3 lipidation, p62 degradation and fluorescent imaging of multiple autophagosomal markers. Inhibition of FOXO3-mediated autophagy increased the level of apoptosis, suggesting that the induction of autophagy by FOXO3-mediated glutamine synthetase expression is important for cellular survival. These findings reveal a growth-factor-responsive network that can directly modulate autophagy through the regulation of glutamine metabolism.


Lipids | 1993

Multiple inhibitory effects of garlic extracts on cholesterol biosynthesis in hepatocytes

Rolf Gebhardt

Exposure of primary rat hepatocytes and human HepG2 cells to water-soluble garlic extracts resulted in the concentration-dependent inhibition of cholesterol biosynthesis at several different enzymatic steps. At low concentrations, sterol biosynthesis from [14C]acetate was decreased in rat hepatocytes by 23% with an IC50 (half-maximal inhibition) value of 90μg/mL and in HepG2 cells by 28% with an IC50 value of 35 μg/mL. This inhibition was exerted at the level of hydroxymethylglutaryl-COA reductase (MHG-CoA reductase) as indicated by direct enzymatic measurements and the absence of inhibition if [14C]mevalonate was used as a precursor. At high concentrations (above 0.5 mg/mL), inhibition of cholesterol biosynthesis was not only seen at an early step where it increased considerably with dose, but also at later steps resulting in the accumulation of the precursors lanosterol and 7-dehydrocholesterol. No desmosterol was formed which, however, was a major precursor accumulating in the presence of triparanol. Thus, the accumulation of sterol precursors seem to be of less therapeutic significance during consumption of garlic, because it requires concentrations one or two orders of magnitude above those affecting HMG-CoA reductase. Alliin, the main sulfur-containing compound of garlic, was without effect itself. If converted to allicin, it resulted in similar changes of the sterol pattern. This suggested that the latter compound might contribute to the inhibition at the late steps. In contrast, nicotinic acid and particularly adenosine caused moderate inhibition of HMG-CoA reductase activity and of cholesterol biosynthesis suggesting that these compounds participate, at least in part, in the early inhibition of sterol synthesis by garlic extracts.


PLOS ONE | 2008

Curcumin inhibits glyoxalase 1: a possible link to its anti-inflammatory and anti-tumor activity.

Thore Santel; Gabi Pflug; Angelika Schäfer; Marcus Hollenbach; Martin Buchold; Anja Hintersdorf; Inge Lindner; Andreas Otto; Marina Bigl; Ilka Oerlecke; Antje Hutschenreuter; Ulrich Sack; Klaus Huse; Marco Groth; Claudia Birkemeyer; Wolfgang Schellenberger; Rolf Gebhardt; Mathias Platzer; Thomas Weiss; Mookambeswaran A. Vijayalakshmi; Monika Krüger; Gerd Birkenmeier

Background Glyoxalases (Glo1 and Glo2) are involved in the glycolytic pathway by detoxifying the reactive methylglyoxal (MGO) into D-lactate in a two-step reaction using glutathione (GSH) as cofactor. Inhibitors of glyoxalases are considered as anti-inflammatory and anti-carcinogenic agents. The recent finding that various polyphenols modulate Glo1 activity has prompted us to assess curcumins potency as an Glo1 inhibitor. Methodology/Principal Findings Cultures of whole blood cells and tumor cell lines (PC-3, JIM-1, MDA-MD 231 and 1321N1) were set up to investigate the effect of selected polyphenols, including curcumin, on the LPS-induced cytokine production (cytometric bead-based array), cell proliferation (WST-1 assay), cytosolic Glo1 and Glo2 enzymatic activity, apoptosis/necrosis (annexin V-FITC/propidium iodide staining; flow cytometric analysis) as well as GSH and ATP content. Results of enzyme kinetics revealed that curcumin, compared to the polyphenols quercetin, myricetin, kaempferol, luteolin and rutin, elicited a stronger competitive inhibitory effect on Glo1 (Ki = 5.1±1.4 µM). Applying a whole blood assay, IC50 values of pro-inflammatory cytokine release (TNF-α, IL-6, IL-8, IL-1β) were found to be positively correlated with the Ki-values of the aforementioned polyphenols. Moreover, whereas curcumin was found to hamper the growth of breast cancer (JIMT-1, MDA-MB-231), prostate cancer PC-3 and brain astrocytoma 1321N1 cells, no effect on growth or vitality of human primary hepatocytes was elucidated. Curcumin decreased D-lactate release by tumor cells, another clue for inhibition of intracellular Glo1. Conclusions/Significance The results described herein provide new insights into curcumins biological activities as they indicate that inhibition of Glo1 by curcumin may result in non-tolerable levels of MGO and GSH, which, in turn, modulate various metabolic cellular pathways including depletion of cellular ATP and GSH content. This may account for curcumins potency as an anti-inflammatory and anti-tumor agent. The findings support the use of curcumin as a potential therapeutic agent.

Collaboration


Dive into the Rolf Gebhardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan G. Hengstler

American Board of Legal Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Mecke

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Hofmann

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge