Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albert S. Yen is active.

Publication


Featured researches published by Albert S. Yen.


Science | 2004

Jarosite and Hematite at Meridiani Planum from Opportunity's Mossbauer Spectrometer

G. Klingelhöfer; Richard V. Morris; B. Bernhardt; C. Schröder; D. Rodionov; P. A. de Souza; Albert S. Yen; Ralf Gellert; E. N. Evlanov; B. Zubkov; J. Foh; U. Bonnes; E. Kankeleit; P. Gütlich; Douglas W. Ming; Franz Renz; Thomas J. Wdowiak; Steven W. Squyres; Raymond E. Arvidson

Mössbauer spectra measured by the Opportunity rover revealed four mineralogical components in Meridiani Planum at Eagle crater: jarosite- and hematite-rich outcrop, hematite-rich soil, olivine-bearing basaltic soil, and a pyroxene-bearing basaltic rock (Bounce rock). Spherules, interpreted to be concretions, are hematite-rich and dispersed throughout the outcrop. Hematitic soils both within and outside Eagle crater are dominated by spherules and their fragments. Olivine-bearing basaltic soil is present throughout the region. Bounce rock is probably an impact erratic. Because jarosite is a hydroxide sulfate mineral, its presence at Meridiani Planum is mineralogical evidence for aqueous processes on Mars, probably under acid-sulfate conditions.


Science | 2004

The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; J. Brückner; Nathalie A. Cabrol; Wendy M. Calvin; Michael H. Carr; Philip R. Christensen; B. C. Clark; Larry S. Crumpler; D. J. Des Marais; C. d'Uston; Thanasis E. Economou; Jack D. Farmer; William H. Farrand; William M. Folkner; M. P. Golombek; S. Gorevan; Joshua A. Grant; Ronald Greeley; John P. Grotzinger; Larry A. Haskin; K. E. Herkenhoff; S. F. Hviid; James Richard Johnson; G. Klingelhöfer; Andrew H. Knoll; Geoffrey A. Landis; Mark T. Lemmon; R. Li

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Science | 2004

Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer

R. Rieder; Ralf Gellert; Robert C. Anderson; J. Brückner; B. C. Clark; G. Dreibus; T. Economou; G. Klingelhöfer; Guenter W. Lugmair; D. W. Ming; S. W. Squyres; C. d'Uston; H. Wänke; Albert S. Yen; Jutta Zipfel

The Alpha Particle X-ray Spectrometer on the Opportunity rover determined major and minor elements of soils and rocks in Meridiani Planum. Chemical compositions differentiate between basaltic rocks, evaporite-rich rocks, basaltic soils, and hematite-rich soils. Although soils are compositionally similar to those at previous landing sites, differences in iron and some minor element concentrations signify the addition of local components. Rocky outcrops are rich in sulfur and variably enriched in bromine relative to chlorine. The interaction with water in the past is indicated by the chemical features in rocks and soils at this site.


Nature | 2005

An integrated view of the chemistry and mineralogy of martian soils

Albert S. Yen; Ralf Gellert; C. Schröder; Richard V. Morris; James F. Bell; Amy T. Knudson; B. C. Clark; Douglas W. Ming; Joy A. Crisp; Raymond E. Arvidson; Diana L. Blaney; J. Brückner; Philip R. Christensen; D.J. DesMarais; P. A. de Souza; T.E. Economou; A. Ghosh; B.C. Hahn; K. E. Herkenhoff; L.A. Haskin; J.A. Hurowitz; Bradley L. Joliff; J. R. Johnson; G. Klingelhofer; M. B. Madsen; Scott M. McLennan; Harry Y. McSween; L. Richter; R. Rieder; D. Rodionov

The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.


Science | 2014

Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars

D. T. Vaniman; David L. Bish; D. W. Ming; Thomas F. Bristow; Richard V. Morris; David F. Blake; S. J. Chipera; Shaunna M. Morrison; Allan H. Treiman; E. B. Rampe; Melissa S. Rice; C. N. Achilles; John P. Grotzinger; Scott M. McLennan; J. Williams; James F. Bell; H. Newsom; Robert T. Downs; Sylvestre Maurice; Philippe Sarrazin; Albert S. Yen; J. M. Morookian; Jack D. Farmer; K. Stack; Ralph E. Milliken; Bethany L. Ehlmann; Dawn Y. Sumner; Gilles Berger; Joy A. Crisp; Joel A. Hurowitz

Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.


Science | 2008

Detection of Silica-Rich Deposits on Mars

Steven W. Squyres; Raymond E. Arvidson; Steven W. Ruff; R. Gellert; Richard V. Morris; D. W. Ming; Larry S. Crumpler; Jack D. Farmer; D. J. Des Marais; Albert S. Yen; Scott M. McLennan; Wendy M. Calvin; James F. Bell; Benton C. Clark; Aihui H. Wang; Timothy J. McCoy; Mariek E. Schmidt; P. A. de Souza

Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.


Science | 2010

Identification of carbonate-rich outcrops on Mars by the Spirit rover.

Richard V. Morris; Steven W. Ruff; Ralf Gellert; Douglas W. Ming; Raymond E. Arvidson; Benton C. Clark; D. C. Golden; K. L. Siebach; G. Klingelhöfer; Christian Schröder; Iris Fleischer; Albert S. Yen; Steven W. Squyres

Ancient Carbonate Minerals on Mars The historical presence of liquid water on Mars together with a CO 2-rich atmosphere should have resulted in the accumulation of large deposits of carbonate minerals. Yet, evidence for the presence of carbonates on the surface of Mars has been scarce. Using data collected by the Mars Exploration Rover, Spirit, Morris et al. (p. 421, published online 3 June; see the Perspective by Harvey) now present evidence for carbonate-rich outcrops in the Comanche outcrops within the Gusev crater. The carbonate is a major outcrop component and may have formed in the Noachian era (∼4 billion years ago) by precipitation from hydrothermal solutions that passed through buried carbonate deposits. Thus, it is likely that extensive aqueous activity under neutral pH conditions did occur on Mars. Substantial carbonate concentration in martian outcrops implies extensive aqueous activity in the past. Decades of speculation about a warmer, wetter Mars climate in the planet’s first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in martian meteorite ALH 84001. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era.


Journal of Geophysical Research | 2006

Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars

Y. McSween; Michael Bruce Wyatt; Ralf Gellert; James F. Bell; Richard V. Morris; K. E. Herkenhoff; Larry S. Crumpler; Keith A. Milam; Karen R. Stockstill; Livio L. Tornabene; Raymond E. Arvidson; Paul Bartlett; Diana L. Blaney; Nathalie A. Cabrol; Philip R. Christensen; B. C. Clark; Joy A. Crisp; D. J. Des Marais; T. Economou; Jack D. Farmer; William H. Farrand; Anupam Ghosh; M. P. Golombek; S. Gorevan; Ronald Greeley; Victoria E. Hamilton; James Richard Johnson; B. L. Joliff; G. Klingelhöfer; Amy T. Knudson

Additional co-authors: PR Christensen, BC Clark, JA Crisp, DJ DesMarais, T Economou, JD Farmer, W Farrand, A Ghosh, M Golombek, S Gorevan, R Greeley, VE Hamilton, JR Johnson, BL Joliff, G Klingelhofer, AT Knudson, S McLennan, D Ming, JE Moersch, R Rieder, SW Ruff, PA de Souza Jr, SW Squyres, H Wnke, A Wang, A Yen, J Zipfel


Journal of Geophysical Research | 2006

Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits

Richard V. Morris; G. Klingelhöfer; C. Schröder; D. Rodionov; Albert S. Yen; D. W. Ming; P. A. de Souza; Thomas J. Wdowiak; Iris Fleischer; R. Gellert; B. Bernhardt; U. Bonnes; Barbara A. Cohen; E. N. Evlanov; J. Foh; P. Gütlich; E. Kankeleit; Timothy J. McCoy; D. W. Mittlefehldt; Franz Renz; Mariek E. Schmidt; B. Zubkov; S. W. Squyres; Raymond E. Arvidson

Additonal co-authors: P Gutlich, E Kankeleit, T McCoy, DW Mittlefehldt, F Renz, ME Schmidt, B Zubkov, SW Squyres, RE Arvidson


Nature | 2005

Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater.

Larry A. Haskin; Alian Wang; Bradley L. Jolliff; Harry Y. McSween; Benton C. Clark; David J. Des Marais; Scott M. McLennan; Nicholas J. Tosca; Joel A. Hurowitz; Jack D. Farmer; Albert S. Yen; Steven W. Squyres; Raymond E. Arvidson; G. Klingelhöfer; C. Schröder; Paulo A. de Souza; Douglas W. Ming; Ralf Gellert; Jutta Zipfel; J. Brückner; James F. Bell; Kenneth E. Herkenhoff; Philip R. Christensen; Steve Ruff; Diana L. Blaney; S. Gorevan; Nathalie A. Cabrol; Larry S. Crumpler; John A. Grant; L. A. Soderblom

Gusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rovers tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown ‘global’ dust. The analyses of three rock interiors exposed by the rock abrasion tool showed that they are similar to one another, consistent with having originated from a common lava flow. Here we report the investigation of soils, rock coatings and rock interiors by the Spirit rover from sol (martian day) 1 to sol 156, from its landing site to the base of the Columbia hills. The physical and chemical characteristics of the materials analysed provide evidence for limited but unequivocal interaction between water and the volcanic rocks of the Gusev plains. This evidence includes the softness of rock interiors that contain anomalously high concentrations of sulphur, chlorine and bromine relative to terrestrial basalts and martian meteorites; sulphur, chlorine and ferric iron enrichments in multilayer coatings on the light-toned rock Mazatzal; high bromine concentration in filled vugs and veins within the plains basalts; positive correlations between magnesium, sulphur and other salt components in trench soils; and decoupling of sulphur, chlorine and bromine concentrations in trench soils compared to Gusev surface soils, indicating chemical mobility and separation.

Collaboration


Dive into the Albert S. Yen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Bell

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Jack D. Farmer

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge