Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William H. Farrand is active.

Publication


Featured researches published by William H. Farrand.


Science | 2004

In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars

Steven W. Squyres; John P. Grotzinger; Raymond E. Arvidson; James F. Bell; Wendy M. Calvin; Philip R. Christensen; Benton C. Clark; Jeffrey Crisp; William H. Farrand; K. E. Herkenhoff; Jeffrey R. Johnson; G. Klingelhöfer; Andrew H. Knoll; Scott M. McLennan; Harry Y. McSween; Richard V. Morris; John W. Rice; Renate Rieder; Larry Soderblom

Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.


Science | 2004

The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; J. Brückner; Nathalie A. Cabrol; Wendy M. Calvin; Michael H. Carr; Philip R. Christensen; B. C. Clark; Larry S. Crumpler; D. J. Des Marais; C. d'Uston; Thanasis E. Economou; Jack D. Farmer; William H. Farrand; William M. Folkner; M. P. Golombek; S. Gorevan; Joshua A. Grant; Ronald Greeley; John P. Grotzinger; Larry A. Haskin; K. E. Herkenhoff; S. F. Hviid; James Richard Johnson; G. Klingelhöfer; Andrew H. Knoll; Geoffrey A. Landis; Mark T. Lemmon; R. Li

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Journal of Geophysical Research | 2006

Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars

Y. McSween; Michael Bruce Wyatt; Ralf Gellert; James F. Bell; Richard V. Morris; K. E. Herkenhoff; Larry S. Crumpler; Keith A. Milam; Karen R. Stockstill; Livio L. Tornabene; Raymond E. Arvidson; Paul Bartlett; Diana L. Blaney; Nathalie A. Cabrol; Philip R. Christensen; B. C. Clark; Joy A. Crisp; D. J. Des Marais; T. Economou; Jack D. Farmer; William H. Farrand; Anupam Ghosh; M. P. Golombek; S. Gorevan; Ronald Greeley; Victoria E. Hamilton; James Richard Johnson; B. L. Joliff; G. Klingelhöfer; Amy T. Knudson

Additional co-authors: PR Christensen, BC Clark, JA Crisp, DJ DesMarais, T Economou, JD Farmer, W Farrand, A Ghosh, M Golombek, S Gorevan, R Greeley, VE Hamilton, JR Johnson, BL Joliff, G Klingelhofer, AT Knudson, S McLennan, D Ming, JE Moersch, R Rieder, SW Ruff, PA de Souza Jr, SW Squyres, H Wnke, A Wang, A Yen, J Zipfel


Journal of Geophysical Research | 2006

Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills

Raymond E. Arvidson; S. W. Squyres; Robert C. Anderson; James F. Bell; Diana L. Blaney; J. Brückner; Nathalie A. Cabrol; Wendy M. Calvin; Michael H. Carr; Philip R. Christensen; B. C. Clark; Larry S. Crumpler; D. J. Des Marais; P. A. de Souza; C. d'Uston; T. Economou; Jack D. Farmer; William H. Farrand; William M. Folkner; M. P. Golombek; S. Gorevan; J. A. Grant; Ronald Greeley; John P. Grotzinger; Edward A. Guinness; Brian C. Hahn; Larry A. Haskin; K. E. Herkenhoff; Joel A. Hurowitz; S. F. Hviid

Spirit landed on the floor of Gusev Crater and conducted initial operations on soil-covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind-blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of monolayers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggests that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.


Journal of Geophysical Research | 2006

Nature and origin of the hematite‐bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets

Raymond E. Arvidson; F. Poulet; Richard V. Morris; Jean-Pierre Bibring; James F. Bell; S. W. Squyres; Philip R. Christensen; G. Bellucci; B. Gondet; B. L. Ehlmann; William H. Farrand; R. L. Fergason; M. Golombek; J. L. Griffes; John P. Grotzinger; Edward A. Guinness; K. E. Herkenhoff; James Richard Johnson; G. Klingelhöfer; Yves Langevin; D. W. Ming; Kimberly D. Seelos; R. Sullivan; J. Ward; Sandra Margot Wiseman; M. J. Wolff

The ~5 km of traverses and observations completed by the Opportunity rover from Endurance crater to the Fruitbasket outcrop show that the Meridiani plains consist of sulfate-rich sedimentary rocks that are largely covered by poorly-sorted basaltic aeolian sands and a lag of granule-sized hematitic concretions. Orbital reflectance spectra obtained by Mars Express OMEGA over this region are dominated by pyroxene, plagioclase feldspar, crystalline hematite (i.e., concretions), and nano-phase iron oxide dust signatures, consistent with Pancam and Mini-TES observations. Mossbauer Spectrometer observations indicate more olivine than observed with the other instruments, consistent with preferential optical obscuration of olivine features in mixtures with pyroxene and dust. Orbital data covering bright plains located several kilometers to the south of the landing site expose a smaller areal abundance of hematite, more dust, and a larger areal extent of outcrop compared to plains proximal to the landing site. Low-albedo, low-thermal-inertia, windswept plains located several hundred kilometers to the south of the landing site are predicted from OMEGA data to have more hematite and fine-grained olivine grains exposed as compared to the landing site. Low calcium pyroxene dominates spectral signatures from the cratered highlands to the south of Opportunity. A regional-scale model is presented for the formation of the plains explored by Opportunity, based on a rising ground water table late in the Noachian Era that trapped and altered local materials and aeolian basaltic sands. Cessation of this aqueous process led to dominance of aeolian processes and formation of the current configuration of the plains.


Science | 2006

Two Years at Meridiani Planum: Results from the Opportunity Rover

Steven W. Squyres; Andrew H. Knoll; Raymond E. Arvidson; B. C. Clark; John P. Grotzinger; Brad L. Jolliff; Scott M. McLennan; Nicholas J. Tosca; James F. Bell; Wendy M. Calvin; William H. Farrand; Timothy D. Glotch; M. Golombek; K. E. Herkenhoff; James Richard Johnson; G. Klingelhöfer; Harry Y. McSween; Albert S. Yen

The Mars Exploration Rover Opportunity has spent more than 2 years exploring Meridiani Planum, traveling ∼8 kilometers and detecting features that reveal ancient environmental conditions. These include well-developed festoon (trough) cross-lamination formed in flowing liquid water, strata with smaller and more abundant hematite-rich concretions than those seen previously, possible relict “hopper crystals” that might reflect the formation of halite, thick weathering rinds on rock surfaces, resistant fracture fills, and networks of polygonal fractures likely caused by dehydration of sulfate salts. Chemical variations with depth show that the siliciclastic fraction of outcrop rock has undergone substantial chemical alteration from a precursor basaltic composition. Observations from microscopic to orbital scales indicate that ancient Meridiani once had abundant acidic groundwater, arid and oxidizing surface conditions, and occasional liquid flow on the surface.


Science | 2004

Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site

L. A. Soderblom; Robert C. Anderson; Raymond E. Arvidson; James F. Bell; Nathalie A. Cabrol; Wendy M. Calvin; Philip R. Christensen; B. C. Clark; T. Economou; B. L. Ehlmann; William H. Farrand; David A. Fike; Ralf Gellert; Timothy D. Glotch; M. Golombek; Ronald Greeley; John P. Grotzinger; K. E. Herkenhoff; Douglas J. Jerolmack; James Richard Johnson; Brad L. Jolliff; G. Klingelhöfer; Andrew H. Knoll; Z. A. Learner; R. Li; M. C. Malin; Scott M. McLennan; Harry Y. McSween; D. W. Ming; Richard V. Morris

The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.


Science | 2004

Evidence from Opportunity's microscopic imager for water on Meridiani Planum

K. E. Herkenhoff; S. W. Squyres; Raymond E. Arvidson; D. S. Bass; James F. Bell; P. Bertelsen; B. L. Ehlmann; William H. Farrand; Lisa R. Gaddis; Ronald Greeley; John P. Grotzinger; Alexander G. Hayes; S. F. Hviid; James Richard Johnson; Bradley L. Jolliff; K. M. Kinch; Andrew H. Knoll; M. B. Madsen; J. N. Maki; Scott M. McLennan; Harry Y. McSween; D. W. Ming; James R Rice; L. Richter; M. Sims; Peter W. H. Smith; L. A. Soderblom; N. Spanovich; R. Sullivan; Shane D. Thompson

The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.


Journal of Geophysical Research | 2006

Sulfate deposition in subsurface regolith in Gusev crater, Mars

Alian Wang; Larry A. Haskin; Steven W. Squyres; Bradley L. Jolliff; Larry S. Crumpler; Ralf Gellert; C. Schröder; Kenneth E. Herkenhoff; Joel A. Hurowitz; Nicholas J. Tosca; William H. Farrand; Robert C. Anderson; Amy T. Knudson

Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rovers exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest the deposition of sulfate minerals within the subsurface regolith, mainly Mg-sulfates accompanied by minor Ca-sulfates and perhaps Fe-sulfates. An increase of Fe2O3, an excess of SiO2, and a minor decrease in the olivine proportion relative to surface materials are also inferred. Three hypotheses are proposed to explain the geochemical trends observed in trenches: (1) multiple episodes of acidic fluid infiltration, accompanied by in situ interaction with igneous minerals and salt deposition; (2) an open hydrologic system characterized by ion transportation in the fluid, subsequent evaporation of the fluid, and salt deposition; and (3) emplacement and mixing of impact ejecta of variable composition. While all three may have plausibly contributed to the current state of the subsurface regolith, the geochemical data are most consistent with ion transportation by fluids and salt deposition as a result of open-system hydrologic behavior. Although sulfates make up >20 wt.% of the regolith in the wall of The Boroughs trench, a higher hydrated sulfate than kieserite within The Boroughs or a greater abundance of sulfates elsewhere than is seen in The Boroughs wall regolith would be needed to hold the structural water indicated by the water-equivalent hydrogen concentration observed by the Gamma-Ray Spectrometer on Odyssey in the Gusev region. Copyright 2006 by the American Geophysical Union.


Science | 2012

Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; F. Calef; B. C. Clark; Barbara A. Cohen; L.A. Crumpler; P. A. de Souza; William H. Farrand; Ralf Gellert; J. A. Grant; K. E. Herkenhoff; Joel A. Hurowitz; Jeffrey R. Johnson; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; T. J. Parker; G. Paulsen; Melissa S. Rice; Steven W. Ruff; Christian Schröder; Albert S. Yen; K. Zacny

Martian Veins After more than 7 years of traveling across the Meridiani Planum region of Mars, the Mars Exploration rover Opportunity reached the Endeavour Crater, a 22-km-impact crater made of materials older than those previously investigated by the rover. Squyres et al. (p. 570) present a comprehensive analysis of the rim of this crater. Localized zinc enrichments that provide evidence for hydrothermal alteration and gypsum-rich veins that were precipitated from liquid water at a relatively low temperature provide a compelling case for aqueous alteration processes in this area at ancient times. Analysis of data from the Mars Exploration Rover Opportunity provides evidence for past water flow near an ancient crater. The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

Collaboration


Dive into the William H. Farrand's collaboration.

Top Co-Authors

Avatar

James F. Bell

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

James Richard Johnson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

K. E. Herkenhoff

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Larry S. Crumpler

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge