Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Baldi is active.

Publication


Featured researches published by Alberto Baldi.


Journal of Biological Chemistry | 2011

Multidrug Resistance Protein 4 (MRP4/ABCC4) Regulates cAMP Cellular Levels and Controls Human Leukemia Cell Proliferation and Differentiation

Sabrina Copsel; Corina I. García; Federico Diez; Monica Vermeulem; Alberto Baldi; Liliana G. Bianciotti; Frans G. M. Russel; Carina Shayo; Carlos Davio

Increased intracellular cAMP concentration plays a well established role in leukemic cell maturation. We previously reported that U937 cells stimulated by H2 receptor agonists, despite a robust increase in cAMP, fail to mature because of rapid H2 receptor desensitization and phosphodiesterase (PDE) activation. Here we show that intracellular cAMP levels not only in U937 cells but also in other acute myeloid leukemia cell lines are also regulated by multidrug resistance-associated proteins (MRPs), particularly MRP4. U937, HL-60, and KG-1a cells, exposed to amthamine (H2-receptor agonist), augmented intracellular cAMP concentration with a concomitant increase in the efflux. Extrusion of cAMP was ATP-dependent and probenecid-sensitive, supporting that the transport was MRP-mediated. Cells exposed to amthamine and the PDE4 inhibitor showed enhanced cAMP extrusion, but this response was inhibited by MRP blockade. Amthamine stimulation, combined with PDE4 and MRP inhibition, induced maximal cell arrest proliferation. Knockdown strategy by shRNA revealed that this process was mediated by MRP4. Furthermore, blockade by probenecid or MRP4 knockdown showed that increased intracellular cAMP levels induce maturation in U937 cells. These findings confirm the key role of intracellular cAMP levels in leukemic cell maturation and provide the first evidence that MRP4 may represent a new potential target for leukemia differentiation therapy.


Biochemical and Biophysical Research Communications | 1986

Mitoxantrone affects topoisomerase activities in human breast cancer cells

Martin D. Crespi; Sofia E. Ivanier; Jorge Genovese; Alberto Baldi

The effects of mitoxantrone, an antineoplastic DNA intercalator, on topoisomerase I and II were studied in two human breast cancer cell lines. A large increase of topoisomerase I activity was found when cells were exposed to various doses of mitoxantrone. Maximal effect was achieved with 20 and 40 ng/mL in T47D and MCF-7 cells respectively. The enhancement on topoisomerase I activity seemed to be reversible, to be dependent on time of exposure to the drug and to require cellular integrity. Type II topoisomerase was inhibited in T47D cells after treatment for one hour with 10 ng/mL of mitoxantrone and enzyme activity was undetectable at higher doses (40 ng/mL). This inhibitory effect did not take place in vitro unless the concentration of the intercalator was increased to 400-500 ng/mL.


Experimental Cell Research | 2010

Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways.

Cintia Notcovich; Federico Diez; Maria Rosario Tubio; Alberto Baldi; Marcelo G. Kazanietz; Carlos Davio; Carina Shayo

It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G(11)-coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changes in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP beta2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or beta2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [(3)H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.


Phytomedicine | 2012

Toddaculin, a natural coumarin from Toddalia asiatica, induces differentiation and apoptosis in U-937 leukemic cells

Ramiro Vázquez; María E. Riveiro; Mónica Vermeulen; Carolina Mondillo; Philip H. Coombes; Neil R. Crouch; Fathima Ismail; Dulcie A. Mulholland; Alberto Baldi; Carina Shayo; Carlos Davio

Chemotherapeutics represent the main approach for the treatment of leukemia. However, the occurrence of adverse side effects and the complete lack of effectiveness in some cases make it necessary to develop new drugs. As part of our screening program to evaluate the potential chemotherapeutic effect of natural coumarins, we investigated the anti-leukemic activities of a series of six prenylated coumarins isolated from the stem bark of Toddalia asiatica (Rutaceae). Among these, 6-(3-methyl-2-butenyl)-5,7-dimethoxycoumarin (toddaculin) displayed the most potent cytotoxic and anti-proliferative effects in U-937 cells. To determine whether these effects resulted from induction of cell death or differentiation, we further evaluated the expression of several apoptosis and maturation markers. Interestingly, while toddaculin at 250 μM was able to induce apoptosis in U-937 cells, involving decreased phosphorylation levels of ERK and Akt, 50 μM toddaculin exerted differentiating effects, inducing both the capacity of U-937 cells to reduce NBT and the expression of differentiation markers CD88 and CD11b, but no change in p-Akt or p-ERK levels. Taken together, these findings indicate that toddaculin displays a dual effect as a cell differentiating agent and apoptosis inducer in U-937 cells, suggesting it may serve as a pharmacological prototype for the development of novel anti-leukemic agents.


Bioorganic & Medicinal Chemistry | 2012

Structure-anti-leukemic activity relationship study of ortho-dihydroxycoumarins in U-937 cells: key role of the δ-lactone ring in determining differentiation-inducing potency and selective pro-apoptotic action.

Ramiro Vázquez; María E. Riveiro; Mónica Vermeulen; Eliana Noelia Alonso; Carolina Mondillo; Graciela Facorro; Lidia L. Piehl; Natalia Gomez; Albertina G. Moglioni; Natalia Fernández; Alberto Baldi; Carina Shayo; Carlos Davio

Previous studies indicated the need of at least one phenolic hydroxyl group in the coumarin core for induction of cytotoxicity in different cell lines. Herein, we present an exhaustive structure-activity relationship study including ortho-dihydroxycoumarins (o-DHC) derivatives, cinnamic acid derivatives (as open-chain coumarin analogues) and 1,2-pyrones (representative of the δ-lactone ring of the coumarin core), carried out to further identify the structural features of o-DHC required to induce leukemic cell differentiation and apoptosis in U-937 cells. Our results show for the first time that the δ-lactone ring positively influences the aforementioned biological effects, by conferring greater potency to compounds with an intact coumarin nucleus. Most tellingly, we reveal herein the crucial role of this molecular portion in determining the selective toxicity that o-DHC show for leukemic cells over normal blood cells. From a pharmacological perspective, our findings point out that o-DHC may be useful prototypes for the development of novel chemotherapeutic agents.


Journal of Cellular Physiology | 2004

Three Novel Hormone-Responsive Cell Lines Derived From Primary Human Breast Carcinomas: Functional Characterization

Stella Maris Vázquez; Alejandro Mladovan; Carlos Garbovesky; Alberto Baldi; Isabel Alicia Luthy

Human breast cancer primary cultures are useful tools for the study of several aspects of cancer biology, including the effects of chemotherapy and acute gene expression in response to different hormonal/chemotherapy treatments. The present study reports the conditions for primary culture of breast cancer samples from untreated patients and the most effective collagenization method to dissociate human samples consisting in an overnight incubation with 1 mg/ml types II or IV collagenase and further incubation in DMEM:F12 (1:1) medium supplemented with glutamine, bovine insulin, penicillin–streptomycin, HEPES, estradiol, cortisol (F), tri‐iodothyronine (T3), transferrine (TR), and 10% fetal calf serum (FCS). These conditions proved to be appropriate for both primary culture and the development of stable cell lines. Of the seven cell lines obtained, three fast growing and estrogen receptor (ER)+/progesterone receptor (PgR)+/EGF receptor (EGFR)+ have been characterized. The cells are able to grow both in soft agar and in nude mice, and express cytokeratins, all parameters characteristic of malignant epithelial cell lines. The cells also exhibit an increased proliferation rate in the presence of estradiol, progesterone, and EGF, suggesting the presence of the corresponding receptors. The mRNA expression of type α‐ and β‐ER as well as EGFR, was confirmed by RT‐PCR. In conclusion, the novel cell lines described, arose from primary tumors and are sensitive to estradiol, progesterone, and EGF. This not only expands the repertoire of breast cancer cells available as potentially useful tools for examining most parameters in breast cancer “in vitro”, but also provides unique new models to explore the complex regulation by steroids as well as growth factors in such cells.


Molecular Pharmacology | 2008

Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

Natalia Fernández; Federico Monczor; Alberto Baldi; Carlos Davio; Carina Shayo

Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with β-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.


Inflammation Research | 1995

Expression of histamine receptors in different cell lines derived from mammary gland and human breast carcinomas

Carlos Davio; Alberto Baldi; Alejandro Mladovan; G. Cricco; C. Fitzsimons; Rosa Bergoc; Elena Rivera

Our group have previously reported the expression of H1 and H2 histamine receptors in human [1] and experimental m a m m a r y carcinomas [2]. In particular, in the NMUinduced m a m m a r y tumors in rats, histamine behaves as a growth factor [3] and modulates tumor cell growth in vivo and in vitro by acting th rough specific membrane receptors [4]. In the present work, we investigated the expression of histamine H1 and H2 receptors in different cell lines derived f rom h u m a n m a m m a r y carcinomas and epithelial m a m m a r y gland, in order to elucidate a possible role for histamine in the neoplastic t ransformat ion of the gland.


Experimental Cell Research | 1988

Increment of DNA topoisomerases in chemically and virally transformed cells

Martin D. Crespi; Alejandro Mladovan; Alberto Baldi

The activities of topoisomerases I and II were assayed in subcellular extracts obtained from nontumorigenic BALB/c 3T3 A31 and normal rat kidney (NRK) cell lines and from the same cells transformed by benzo[a]pyrene (BP-A31), Moloney (M-MSV-A31) and Kirsten (K-A31) sarcoma viruses, and simian virus 40 (SV-NRK). The enzymatic activity of topoisomerase I was monitored by the relaxation of negatively supercoiled pBR322 DNA and by the formation of covalent complexes between 32P-labeled DNA and topoisomerase I. Topoisomerase II activity was determined by decatenation of kinetoplast DNA (k-DNA). It was found that nuclear and cytoplasmic type I topoisomerase specific activities were higher in every transformed cell line than in the normal counterparts. These differences cannot be attributed to an inhibitory factor present in A31 cells. When chromatin was treated at increasing ionic strengths, the 0.4 M NaCl extract showed the highest topoisomerase I specific activity. Moreover, in this fraction the transformed cells exhibited the most significant increment in the enzymatic activity as compared with nontransformed cultures. Spontaneously transformed A31 cells showed topoisomerase I activity similar to that of extracts of cells transformed by benzo[a]pyrene. Topoisomerase II specific activity was also increased in SV-NRK cells, as judged by the assay for decatenation of k-DNA to yield minicircle DNA.


Molecular Pharmacology | 2013

Cross-Desensitization and Cointernalization of H1 and H2 Histamine Receptors Reveal New Insights into Histamine Signal Integration

Natalia Alonso; Natalia Fernández; Cintia Notcovich; Federico Monczor; May Simaan; Alberto Baldi; Gutkind Js; Carlos Davio; Carina Shayo

G protein-coupled receptor signaling does not result from sequential activation of a linear pathway of proteins/enzymes, but rather from complex interactions of multiple, branched signaling routes, i.e., signaling networks. In this work we present an exhaustive study of the cross-talk between H1 and H2 histamine receptors (H1R and H2R) in U937 cells and Chinese hamster ovary-transfected cells. By desensitization assays we demonstrated the existence of a crossdesensitization between both receptors independent of protein kinase A or C. H1R-agonist stimulation inhibited cell proliferation and induced apoptosis in U937 cells following treatment of 48 hours. H1R-induced antiproliferative and apoptotic response was inhibited by an H2R agonist suggesting that the cross-talk between both receptors modifies their function. Binding and confocal microscopy studies revealed cointernalization of both receptors upon treatment with the agonists. To evaluate potential heterodimerization of the receptors, sensitized emission fluorescence resonance energy transfer experiments were performed in human embryonic kidney 293T cells using H1R-cyan fluorescent protein and H2R-yellow fluorescent protein. To our knowledge these findings may represent the first demonstration of agonist-induced heterodimerization of the H1R and H2R. In addition, we also show that the inhibition of the internalization process did not prevent receptor crossdesensitization, which was mediated by G protein-coupled receptor kinase 2. Our study provides new insights into the complex signaling network mediated by histamine and further knowledge for the rational use of its ligands.

Collaboration


Dive into the Alberto Baldi's collaboration.

Top Co-Authors

Avatar

Carlos Davio

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Carina Shayo

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Federico Monczor

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro Mladovan

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramiro Vázquez

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Mondillo

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Cintia Notcovich

Instituto de Biología y Medicina Experimental

View shared research outputs
Researchain Logo
Decentralizing Knowledge