Alberto Comin
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alberto Comin.
Chemical Society Reviews | 2014
Alberto Comin; Liberato Manna
We present a review on the emerging materials for novel plasmonic colloidal nanocrystals. We start by explaining the basic processes involved in surface plasmon resonances in nanoparticles and then discuss the classes of nanocrystals that to date are particularly promising for tunable plasmonics: non-stoichiometric copper chalcogenides, extrinsically doped metal oxides, oxygen-deficient metal oxides and conductive metal oxides. We additionally introduce other emerging types of plasmonic nanocrystals and finally we give an outlook on nanocrystals of materials that could potentially display interesting plasmonic properties.
Nano Letters | 2011
Francesco Scotognella; G Della Valle; A R Srimath Kandada; D Dorfs; M. Zavelani-Rossi; Matteo Conforti; K Miszta; Alberto Comin; Kseniya Korobchevskaya; Guglielmo Lanzani; Liberato Manna; F. Tassone
The optical response of metallic nanostructures after intense excitation with femtosecond-laser pulses has recently attracted increasing attention: such response is dominated by ultrafast electron-phonon coupling and offers the possibility to achieve optical modulation with unprecedented terahertz bandwidth. In addition to noble metal nanoparticles, efforts have been made in recent years to synthesize heavily doped semiconductor nanocrystals so as to achieve a plasmonic behavior with spectrally tunable features. In this work, we studied the dynamics of the localized plasmon resonance exhibited by colloidal Cu(2-x)Se nanocrystals of 13 nm in diameter and with x around 0.15, upon excitation by ultrafast laser pulses via pump-probe experiments in the near-infrared, with ∼200 fs resolution time. The experimental results were interpreted according to the two-temperature model and revealed the existence of strong nonlinearities in the plasmonic absorption due to the much lower carrier density of Cu(2-x)Se compared to noble metals, which led to ultrafast control of the probe signal with modulation depth exceeding 40% in transmission.
ACS Nano | 2013
Pablo Guardia; Kseniya Korobchevskaya; Alberto Casu; Alessandro Genovese; Liberato Manna; Alberto Comin
Metal-semiconductor nanocrystal heterostructures are model systems for understanding the interplay between the localized surface plasmon resonances in the metal domain and the relaxation of the excited carriers in the semiconductor domain. Here we report the synthesis of colloidal Au₂Cd (core)/CdSe (shell) nanocrystal heterostructures, which were characterized extensively with several structural and optical techniques, including time-resolved fluorescence and broad-band transient absorption spectroscopy (both below and above the CdSe band gap). The dynamics of the transient plasmon peak was dominated by the relaxation of hot carriers in the metal core, its spectral shape was independent of the pump wavelength, and the bleaching lifetime was about half a picosecond, comparable with the value found in the AuCd seeds used for the synthesis.
ACS Nano | 2013
Marco Allione; Ana Ballester; Hongbo Li; Alberto Comin; J. L. Movilla; Juan I. Climente; Liberato Manna; Iwan Moreels
The spectral dependence of the two-photon absorption in CdSe/CdS core/shell nanocrystal heterorods has been studied via two-photon-induced luminescence excitation spectroscopy. We verified that the two-photon absorption in these samples is a purely nonlinear phenomenon, excluding the contribution from multistep linear absorption mediated by defect states. A large absorption cross section was observed for CdSe/CdS core/shell quantum rods, in the range of 10(5) GM (1 GM = 10(-50) cm(4) s phot(-1)), scaling with the total nanocrystal volume and thus independent of the core emission wavelength. In the two-photon luminescence excitation spectra, peaks are strongly blue-shifted with respect to the one-photon absorption peaks, for both core and shell transitions. The experimental results are confirmed by k·p calculations, which attribute the shift to both different parity selection rules that apply to one-photon and two-photon transitions and a low oscillator strength for two-photon transitions close to the ground-state one-photon absorption. In contrast with lead chalcogenide quantum dots, we found no evidence of a breakdown of the optical selection rules, despite the presence of band anisotropy, via the anisotropic hole masses, and the explicitly induced reduction of the electron wave function symmetry via the rod shape of the shell. The anisotropy does lead to an unexpected splitting of the electron P-states in the case of a large CdSe core encapsulated in a thin CdS shell. Hence, tuning of the core and shell dimensions and the concurrent transition from type I to quasi-type II carrier localization enables unprecedented control over the band-edge two-photon absorption.
Nano Letters | 2015
Torben Winzer; Richard Ciesielski; Matthias Handloser; Alberto Comin; Achim Hartschuh; Ermin Malic
We present a joint theory-experiment study on ultrafast photoluminescence from photoexcited graphene. On the basis of a microscopic theory, we reveal two distinct mechanisms behind the occurring photoluminescence: besides the well-known incoherent contribution driven by nonequilibrium carrier occupations, we found a coherent part that spectrally shifts with the excitation energy. In our experiments, we demonstrate for the first time the predicted appearance and spectral shift of the coherent photoluminescence.
Applied Physics Letters | 2011
Kseniya Korobchevskaya; Chandramohan George; Alberto Diaspro; Liberato Manna; Roberto Cingolani; Alberto Comin
Colloidal nanocrystal heterodimers composed of a gold domain and an iron oxide domain have been investigated by femtosecond transient absorption spectroscopy. The measured decay times were compared with the ones obtained from samples of “only” gold nanocrystals and iron oxide nanocrystals. Our results indicate that there is no significant charge transfer at the interface between gold and iron oxide in heterodimers.
Nanoscale | 2011
Chandramohan George; Alessandro Genovese; Fen Qiao; Kseniya Korobchevskaya; Alberto Comin; Andrea Falqui; Sergio Marras; Anna Roig; Yang Zhang; Roman Krahne; Liberato Manna
We report here a simple synthetic route to Au-Fe(x)O(y) heterostructures in which spinel ferrite (Fe(x)O(y)) grows as a nanorod on a spherical gold (Au) seed. The large red shift in the plasmon resonance in the heterostructures could be explained by a dielectric effect (although we could not entirely exclude a contribution due to electron transfer from Au to defect states at the Au-Fe(x)O(y) interface), while the magnetic properties of the Au-Fe(x)O(y) heterostructures were basically the same as those of the corresponding nanocrystals after Au leaching. In films of Au-Fe(x)O(y) heterostructures the electrical conductivity appeared to be mediated by the Au domains.
Journal of The Optical Society of America B-optical Physics | 2014
Alberto Comin; Richard Ciesielski; Giovanni Piredda; Kevin Donkers; Achim Hartschuh
Delivering femtosecond laser light in the focal plane of a high numerical aperture microscope objective is still a challenge, despite significant developments in the generation of ultrashort pulses. One of the most popular techniques, used to correct phase distortions resulting from propagation through transparent media, is the multiphoton intrapulse interference phase scan (MIIPS). The accuracy of MIIPS, however, is limited when higher-order phase distortions are present. Here we introduce an improvement, called G-MIIPS, which avoids the shortcomings of MIIPS, reduces the influence of higher-order phase terms, and can be used to more efficiently compress broadband laser pulses even with a simple 4f pulse shaper setup. In this work, we present analytical formulas for MIIPS and G-MIIPS, which are valid for chirped Gaussian pulses; we show an approximated analytic expression for G-MIIPS, which is valid for arbitrary pulse shapes. Finally we demonstrate the increased accuracy of G-MIIPS via experiments and numerical simulations.
Nano Letters | 2015
Richard Ciesielski; Alberto Comin; Matthias Handloser; Kevin Donkers; Giovanni Piredda; A. Lombardo; A. C. Ferrari; Achim Hartschuh
We investigate near-degenerate four-wave mixing in graphene using femtosecond laser pulse shaping microscopy. Intense near-degenerate four-wave mixing signals on either side of the exciting laser spectrum are controlled by amplitude and phase shaping. Quantitative signal modeling for the input pulse parameters shows a spectrally flat phase response of the near-degenerate four-wave mixing due to the linear dispersion of the massless Dirac Fermions in graphene. Exploiting these properties we demonstrate that graphene is uniquely suited for the intrafocus phase characterization and compression of broadband laser pulses, circumventing disadvantages of common methods utilizing second or third harmonic light.
Optics Express | 2016
Alberto Comin; Richard Ciesielski; Nicolás Coca-López; Achim Hartschuh
We developed a new method for retrieving the group delay dispersion of a laser from Multiphoton Intra-pulse Interference Phase Scan (MIIPS) data. The method takes into account the spectral amplitude of the laser pulse and provides a direct feedback on the accuracy of the retrieval. The main advantage of the method derives from providing sufficiently high accuracy to avoid the need for multiple experimental iterations. Another advantage is that the new method can discriminate among pulses with different spectral phase and amplitude profiles, in which MIIPS traces occupy the same position in the phase-frequency MIIPS map.