Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger Cachope is active.

Publication


Featured researches published by Roger Cachope.


Cell Reports | 2012

Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing

Roger Cachope; Yolanda Mateo; Brian N. Mathur; James Irving; Hui-Ling Wang; Marisela Morales; David M. Lovinger; Joseph F. Cheer

Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.


The Journal of Neuroscience | 2013

ΔFosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli

Mary Kay Lobo; Samir Zaman; Diane Damez-Werno; Ja Wook Koo; Rosemary C. Bagot; Jennifer A. DiNieri; Alexandria L. Nugent; Eric Finkel; Dipesh Chaudhury; Ramesh Chandra; Efrain Riberio; Jacqui Rabkin; Ezekiell Mouzon; Roger Cachope; Joseph F. Cheer; Ming-Hu Han; David M. Dietz; David W. Self; Yasmin L. Hurd; Vincent Vialou; Eric J. Nestler

The transcription factor, ΔFosB, is robustly and persistently induced in striatum by several chronic stimuli, such as drugs of abuse, antipsychotic drugs, natural rewards, and stress. However, very few studies have examined the degree of ΔFosB induction in the two striatal medium spiny neuron (MSN) subtypes. We make use of fluorescent reporter BAC transgenic mice to evaluate induction of ΔFosB in dopamine receptor 1 (D1) enriched and dopamine receptor 2 (D2) enriched MSNs in ventral striatum, nucleus accumbens (NAc) shell and core, and in dorsal striatum (dStr) after chronic exposure to several drugs of abuse including cocaine, ethanol, Δ(9)-tetrahydrocannabinol, and opiates; the antipsychotic drug, haloperidol; juvenile enrichment; sucrose drinking; calorie restriction; the serotonin selective reuptake inhibitor antidepressant, fluoxetine; and social defeat stress. Our findings demonstrate that chronic exposure to many stimuli induces ΔFosB in an MSN-subtype selective pattern across all three striatal regions. To explore the circuit-mediated induction of ΔFosB in striatum, we use optogenetics to enhance activity in limbic brain regions that send synaptic inputs to NAc; these regions include the ventral tegmental area and several glutamatergic afferent regions: medial prefrontal cortex, amygdala, and ventral hippocampus. These optogenetic conditions lead to highly distinct patterns of ΔFosB induction in MSN subtypes in NAc core and shell. Together, these findings establish selective patterns of ΔFosB induction in striatal MSN subtypes in response to chronic stimuli and provide novel insight into the circuit-level mechanisms of ΔFosB induction in striatum.


Nature Communications | 2015

Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression.

Rosemary C. Bagot; Eric M. Parise; Catherine J. Peña; Hongxing Zhang; Ian Maze; Dipesh Chaudhury; Brianna Persaud; Roger Cachope; Carlos A. Bolaños-Guzmán; Joseph F. Cheer; Karl Deisseroth; Ming-Hu Han; Eric J. Nestler

Enhanced glutamatergic transmission in the nucleus accumbens (NAc), a region critical for reward and motivation, has been implicated in the pathophysiology of depression; however, the afferent source of this increased glutamate tone is not known. The NAc receives glutamatergic inputs from the medial prefrontal cortex (mPFC), ventral hippocampus (vHIP) and basolateral amygdala (AMY). Here, we demonstrate that glutamatergic vHIP afferents to NAc regulate susceptibility to chronic social defeat stress (CSDS). We observe reduced activity in vHIP in mice resilient to CSDS. Furthermore, attenuation of vHIP-NAc transmission by optogenetic induction of long-term depression is pro-resilient, whereas acute enhancement of this input is pro-susceptible. This effect is specific to vHIP afferents to the NAc, as optogenetic stimulation of either mPFC or AMY afferents to the NAc is pro-resilient. These data indicate that vHIP afferents to NAc uniquely regulate susceptibility to CSDS, highlighting an important, novel circuit-specific mechanism in depression.


Neuron | 2012

Endocannabinoids Shape Accumbal Encoding of Cue-Motivated Behavior via CB1 Receptor Activation in the Ventral Tegmentum

Erik B. Oleson; Michael V. Beckert; Joshua T. Morra; Carien S. Lansink; Roger Cachope; Rehab A. Abdullah; Amy L. Loriaux; Dustin Schetters; Tommy Pattij; Mitchell F. Roitman; Aron H. Lichtman; Joseph F. Cheer

Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high-frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also results in the release of endocannabinoids from dopamine cell bodies. In this context, endocannabinoids are thought to regulate reward seeking by modulating dopamine signaling, although a direct link has never been demonstrated. To test this, we pharmacologically manipulated endocannabinoid neurotransmission in the VTA while measuring transient changes in dopamine concentration in the NAc during reward seeking. Disrupting endocannabinoid signaling dramatically reduced, whereas augmenting levels of the endocannabinoid 2-arachidonoylglycerol (2AG) increased, cue-evoked dopamine concentrations and reward seeking. These data suggest that 2AG in the VTA regulates reward seeking by sculpting ethologically relevant patterns of dopamine release during reward-directed behavior.


Frontiers in Behavioral Neuroscience | 2014

Local control of striatal dopamine release.

Roger Cachope; Joseph F. Cheer

The mesolimbic and nigrostriatal dopamine (DA) systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA) and the substantia nigra (SN). However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.


Philosophical Transactions of the Royal Society B | 2012

Functional diversity on synaptic plasticity mediated by endocannabinoids.

Roger Cachope

Endocannabinoids (eCBs) act as modulators of synaptic transmission through activation of a number of receptors, including, but not limited to, cannabinoid receptor 1 (CB1). eCBs share CB1 receptors as a common target with Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in marijuana. Although THC has been used for recreational and medicinal purposes for thousands of years, little was known about its effects at the cellular level or on neuronal circuits. Identification of CB1 receptors and the subsequent development of its specific ligands has therefore enhanced our ability to study and bring together a substantial amount of knowledge regarding how marijuana and eCBs modify interneuronal communication. To date, the eCB system, composed of cannabinoid receptors, ligands and the relevant enzymes, is recognized as the best-described retrograde signalling system in the brain. Its impact on synaptic transmission is widespread and more diverse than initially thought. The aim of this review is to succinctly present the most common forms of eCB-mediated modulation of synaptic transmission, while also illustrating the multiplicity of effects resulting from specializations of this signalling system at the circuital level.


Trends in Neurosciences | 2017

Unravelling and Exploiting Astrocyte Dysfunction in Huntington’s Disease

Baljit S. Khakh; Vahri Beaumont; Roger Cachope; Ignacio Munoz-Sanjuan; Steven A. Goldman; Rosemarie Grantyn

Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntingtons disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter clearance, as well as on the use of transplanted astrocytes to produce therapeutic benefit in mouse models of HD. Overall, the data suggest that astrocyte dysfunction is an important contributor to the onset and progression of some HD symptoms in mice. Additional exploration of astrocytes in HD mouse models and humans is needed and may provide new therapeutic opportunities to explore in conjunction with neuronal rescue and repair strategies.


Neuropsychopharmacology | 2014

Cannabinoid Receptor Activation Shifts Temporally Engendered Patterns of Dopamine Release

Erik B. Oleson; Roger Cachope; Aurelie Fitoussi; Kimberly Tsutsui; Sharon Wu; Jacqueline A Gallegos; Joseph F. Cheer

The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55 212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration—suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55 212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner—suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55 212-2.


Neuron | 2017

Endocannabinoid Actions on Cortical Terminals Orchestrate Local Modulation of Dopamine Release in the Nucleus Accumbens

Yolanda Mateo; Kari A. Johnson; Dan P. Covey; Brady K. Atwood; Hui-Ling Wang; Shiliang Zhang; Iness Gildish; Roger Cachope; Luigi Bellocchio; Manuel Guzmán; Marisela Morales; Joseph F. Cheer; David M. Lovinger

Dopamine (DA) transmission mediates numerous aspects of behavior. Although DA release is strongly linked to firing of DA neurons, recent developments indicate the importance of presynaptic modulation at striatal dopaminergic terminals. The endocannabinoid (eCB) system regulates DA release and is a canonical gatekeeper of goal-directed behavior. Here we report that extracellular DA increases induced by selective optogenetic activation of cholinergic neurons in the nucleus accumbens (NAc) are inhibited by CB1 agonists and eCBs. This modulation requires CB1 receptors on cortical glutamatergic afferents. Dopamine increases driven by optogenetic activation of prefrontal cortex (PFC) terminals in the NAc are similarly modulated by activation of these CB1 receptors. We further demonstrate that this same population of CB1 receptors modulates optical self-stimulation sustained by activation of PFC afferents in the NAc. These results establish local eCB actions on PFC terminals within the NAc that inhibit mesolimbic DA release and constrain reward-driven behavior.


The Journal of Neuroscience | 2016

Subsecond Regulation of Synaptically Released Dopamine by COMT in the Olfactory Bulb.

Renee E. Cockerham; Shaolin Liu; Roger Cachope; Emi Kiyokage; Joseph F. Cheer; Michael T. Shipley; Adam C. Puche

The efficacy of neurotransmission depends on multiple factors, including presynaptic vesicular release of transmitter, postsynaptic receptor populations and clearance/inactivation of the transmitter. In the olfactory bulb (OB), short axon cells (SACs) form an interglomerular circuit that uses GABA and dopamine (DA) as cotransmitters. Selective optical activation of SACs causes GABA and DA co-release, resulting in a fast, postsynaptic GABA inhibitory response and a slower G-protein-coupled DA rebound excitation. In most systems, vesicular release of DA is cleared by the dopamine transporter (DAT). However, in the OB, high levels of specific DA metabolites suggest that enzymatic catalysis by catechol-O-methyl-transferase (COMT) predominates over DAT re-uptake. To assess this possibility we measured the amount of the DA breakdown enzyme, COMT, present in the OB. Compared with the striatum, the brain structure richest in DA terminals, the OB contains 50% more COMT per unit of tissue. Furthermore, the OB has dramatically less DAT compared with striatum, supporting the idea that COMT enzymatic breakdown, rather than DAT recycling, is the predominant mechanism for DA clearance. To functionally assess COMT inactivation of vesicular release of DA we used fast-scan cyclic voltammetry and pharmacological blockade of COMT. In mice expressing ChR2 in tyrosine hydroxylase-containing neurons, optical activation of SACs evoked robust DA release in the glomerular layer. The COMT inhibitor, tolcapone, increased the DA signal ∼2-fold, whereas the DAT inhibitor GBR12909 had no effect. Together, these data indicate that the OB preferentially employs COMT enzymatic inactivation of vesicular release of DA. SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are encoded by glomerular activation patterns. Dopaminergic short axon neurons (SACs) form an extensive network of lateral connections that mediate cross talk among glomeruli, releasing GABA and DA onto sensory nerve terminals and postsynaptic neurons. DA neurons are ∼10-fold more numerous in OB than in ventral tegmental areas that innervate the striatum. We show that OB has abundant expression of the DA catalytic enzyme catechol-O-methyl-transferase (COMT), but negligible expression of the dopamine transporter. Using optogenetics and fast-scan cyclic voltammetry, we show that inhibition of COMT increases DA signals ∼2-fold. Thus, in contrast to the striatum, which has the brains highest proportion of DAergic synapses, the DA catalytic pathway involving COMT predominates over re-uptake in OB.

Collaboration


Dive into the Roger Cachope's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dipesh Chaudhury

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Hu Han

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Rosemary C. Bagot

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine J. Peña

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

David M. Lovinger

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge