Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Faggioni is active.

Publication


Featured researches published by Alberto Faggioni.


OncoImmunology | 2014

Consensus guidelines for the detection of immunogenic cell death

Oliver Kepp; Laura Senovilla; Ilio Vitale; Erika Vacchelli; Sandy Adjemian; Patrizia Agostinis; Lionel Apetoh; Fernando Aranda; Vincenzo Barnaba; Norma Bloy; Laura Bracci; Karine Breckpot; David Brough; Aitziber Buqué; Maria G. Castro; Mara Cirone; María I. Colombo; Isabelle Cremer; Sandra Demaria; Luciana Dini; Aristides G. Eliopoulos; Alberto Faggioni; Silvia C. Formenti; Jitka Fucikova; Lucia Gabriele; Udo S. Gaipl; Jérôme Galon; Abhishek D. Garg; François Ghiringhelli; Nathalia A. Giese

Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.


Frontiers in Immunology | 2015

Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

Abhishek D. Garg; Lorenzo Galluzzi; Lionel Apetoh; Thaïs Baert; Raymond B. Birge; José Manuel Bravo-San Pedro; Karine Breckpot; David Brough; Ricardo Chaurio; Mara Cirone; An Coosemans; Pierre G. Coulie; Dirk De Ruysscher; Luciana Dini; Peter de Witte; Aleksandra M. Dudek-Peric; Alberto Faggioni; Jitka Fucikova; Udo S. Gaipl; Jakub Golab; Marie Lise Gougeon; Michael R. Hamblin; Akseli Hemminki; Martin Herrmann; James W. Hodge; Oliver Kepp; Guido Kroemer; Dmitri V. Krysko; Walter G. Land; Frank Madeo

The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.


Journal of Medical Virology | 2001

Human herpesvirus 6 infection in neoplastic and normal brain tissue

Laura Cuomo; Pankaj Trivedi; Maria Rosaria Cardillo; Franco Maria Gagliardi; Aldo Vecchione; Riccardo Caruso; Antonella Calogero; Luigi Frati; Alberto Faggioni; Giuseppe Ragona

The presence and variant distribution of human herpesvirus 6 (HHV‐6) was investigated by a nested polymerase chain reaction (PCR) in 118 biopsies from patients affected by nervous tissue tumor (115 primary tumors and 3 metastasis) and in 31 autopsy samples from the brain of healthy individuals. HHV‐6 DNA sequences were detected in normal and neoplastic nervous tissue at a frequency of 32% and 37%, respectively. In both tissues, variant A was three times more frequent than the variant B. Peripheral blood lymphocytes (PBLs) derived from seven tumor affected patients contained the same variant as their respective brain sample, as judged by PCR. The expression of HHV‐6 encoded immediate early protein p41 was detected by immunohistochemistry in neoplastic but not in normal brain. This may reflect viral reactivation from latency in immunocompromised patients. The seroepidemiological data indicated a frequency distribution of anti‐HHV‐6 antibodies in patients with brain tumors similar to that found in healthy donors. J. Med. Virol. 63:45–51, 2001.


Nucleic Acids Research | 2011

microRNA profiling in Epstein–Barr virus-associated B-cell lymphoma

Jochen Imig; Natalie Motsch; Jia Yun Zhu; Stephanie Barth; Michal Okoniewski; Tanja Reineke; Marianne Tinguely; Alberto Faggioni; Pankaj Trivedi; Gunter Meister; Christoph Renner; Friedrich A. Grässer

The Epstein–Barr virus (EBV) is an oncogenic human Herpes virus found in ∼15% of diffuse large B-cell lymphoma (DLBCL). EBV encodes miRNAs and induces changes in the cellular miRNA profile of infected cells. MiRNAs are small, non-coding RNAs of ∼19–26 nt which suppress protein synthesis by inducing translational arrest or mRNA degradation. Here, we report a comprehensive miRNA-profiling study and show that hsa-miR-424, -223, -199a-3p, -199a-5p, -27b, -378, -26b, -23a, -23b were upregulated and hsa-miR-155, -20b, -221, -151-3p, -222, -29b/c, -106a were downregulated more than 2-fold due to EBV-infection of DLBCL. All known EBV miRNAs with the exception of the BHRF1 cluster as well as EBV-miR-BART15 and -20 were present. A computational analysis indicated potential targets such as c-MYB, LATS2, c-SKI and SIAH1. We show that c-MYB is targeted by miR-155 and miR-424, that the tumor suppressor SIAH1 is targeted by miR-424, and that c-SKI is potentially regulated by miR-155. Downregulation of SIAH1 protein in DLBCL was demonstrated by immunohistochemistry. The inhibition of SIAH1 is in line with the notion that EBV impedes various pro-apoptotic pathways during tumorigenesis. The down-modulation of the oncogenic c-MYB protein, although counter-intuitive, might be explained by its tight regulation in developmental processes.


Journal of Virology | 2005

Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: Interactions with BFRF1 and with the nuclear lamina

Roberta Gonnella; Antonella Farina; Roberta Santarelli; Salvatore Raffa; Regina Feederle; Roberto Bei; Marisa Granato; Andrea Modesti; Luigi Frati; Henri Jacques Delecluse; Maria Rosaria Torrisi; Antonio Angeloni; Alberto Faggioni

ABSTRACT We have reported in the accompanying paper that the BFRF1 protein of Epstein-Barr virus (EBV) is important for efficient primary viral envelopment and egress (A. Farina, R. Feederle, S. Raffa, R. Gonnella, R. Santarelli, L. Frati, A. Angeloni, M. R. Torrisi, A. Faggioni, and H.-J. Delecluse, J. Virol. 79:3703-3712). Here we describe the characterization of the product of the EBV BFLF2 gene, which belongs to a family of conserved herpesviral genes which include the UL31 genes of herpes simplex virus and of pseudorabies virus and whose products are known to interact with UL34, the positional homolog of BFRF1. BFLF2 is an early transcript and is expressed in a variety of cell lines upon EBV lytic cycle activation. Western blotting of purified virion preparations showed that BFLF2 is a component of intracellular virions but is absent from mature extracellular virions. Coimmunoprecipitation experiments indicated that BFLF2 interacts with BFRF1, which was confirmed by immunofluorescence confocal microscopy showing that the two proteins colocalize on the nuclear membrane not only upon cotransfection in epithelial cells but also during viral replication. In cells carrying an EBV mutant with the BFRF1 gene deleted (293-BFRF1-KO cells) BFLF2 expression was low, and it was restored to wild-type levels upon treatment of the cells with the proteasome inhibitor MG132. Furthermore, recomplementing the 293-BFRF1-KO cells by BFRF1 transfection restored BFLF2 expression to the wild-type level. In addition, when expressed alone BFLF2 was localized diffusely inside the nucleus, whereas in the presence of BFRF1 the two proteins colocalized at the nuclear rim. Finally, 293 epithelial cells transfected with either protein or cotransfected were analyzed by electron microscopy to investigate potential alterations in the morphology of the nuclear membrane. The ultrastructural analysis revealed that (i) BFRF1 caused duplications of the nuclear membrane, similar to those reported to occur during the course of herpesviral replication, and (ii) while BFLF2 alone did not cause any apparent alteration, coexpression of the two proteins dramatically induced profound convolutions of the duplicated nuclear membrane. Both biochemical and morphological analysis showed association of the BFRF1-BFLF2 complex with a component of the nuclear lamina, lamin B. Taken together, these results and those of the accompanying paper (Farina et al., J. Virol. 79:3703-3712) indicate an important role of BFRF1 and BFLF2 in the early steps of EBV maturation at the nuclear membrane.


Journal of Virology | 2005

BFRF1 of epstein-barr virus is essential for efficient primary viral envelopment and egress

Antonella Farina; Regina Feederle; Salvatore Raffa; Roberta Gonnella; Roberta Santarelli; Luigi Frati; Antonio Angeloni; Maria Rosaria Torrisi; Alberto Faggioni; Henri Jacques Delecluse

ABSTRACT The molecular mechanisms that underlie maturation and egress of Epstein-Barr virus (EBV) virions are only partially characterized. We have recently shown that the BFRF1 gene, the EBV positional homolog of herpes simplex virus type 1 and pseudorabies virus UL34, is expressed early during EBV lytic replication and that it is found predominantly on the nuclear membrane (A. Farina, R. Santarelli, R. Gonnella, R. Bei, R. Muraro, G. Cardinali, S. Uccini, G. Ragona, L. Frati, A. Faggioni, and A. Angeloni, J. Virol. 74:3235-3244, 2000). These data suggest that the BFRF1 protein might be involved in viral primary envelopment. To precisely determine the function of this protein, we have constructed an EBV mutant devoid of the BFRF1 gene (BFRF1-KO). 293 cells carrying BFRF1-KO showed no differences in comparison with wild-type EBV in terms of DNA lytic replication or expression of late viral proteins upon induction of the lytic cycle. However, binding assays and infection experiments using cell lines or human cord blood lymphocytes showed a clear reduction in the viral mutant titers. Complementation experiments with BFRF1-KO and a BFRF1 expression vector restored viral titers to levels similar to those for the wild-type control, showing that the modifications that we introduced were limited to the BFRF1 gene. Electron microscopic observations showed that the reduction in viral titers was due to sequestration of EBV nucleocapsids in the nuclei of lytically induced cells. This suggests that BFRF1 is involved in transport of the maturing virion across the nuclear membrane. This hypothesis was further supported by the observation that BFRF1 is present in maturing intracellular virions but not in their extracellular counterparts. This implies that BFRF1 is a key protein for EBV maturation.


Journal of Virology | 2014

Epstein-Barr Virus Blocks the Autophagic Flux and Appropriates the Autophagic Machinery To Enhance Viral Replication

Marisa Granato; Roberta Santarelli; Antonella Farina; Roberta Gonnella; Lavinia Vittoria Lotti; Alberto Faggioni; Mara Cirone

ABSTRACT Autophagy is a catabolic pathway that helps cells to survive under stressful conditions. Cells also use autophagy to clear microbiological infections, but microbes have learned how to manipulate the autophagic pathway for their own benefit. The experimental evidence obtained in this study suggests that the autophagic flux is blocked at the final steps during the reactivation of Epstein-Barr virus (EBV) from latency. This is indicated by the level of the lipidated form of LC3 that does not increase in the presence of bafilomycin and by the lack of colocalization of autophagosomes with lysosomes, which correlates with reduced Rab7 expression. Since the inhibition of the early phases of autophagy impaired EBV replication and viral particles were observed in autophagic vesicles in the cytoplasm of producing cells, we suggest that EBV exploits the autophagic machinery for its transportation in order to enhance viral production. The autophagic block was not mediated by ZEBRA, an immediate-early EBV lytic gene, whose transfection in Ramos, Akata, and 293 cells promoted a complete autophagic flux. The block occurred only when the complete set of EBV lytic genes was expressed. We suggest that the inhibition of the early autophagic steps or finding strategies to overcome the autophagic block, allowing viral degradation into the lysosomes, can be exploited to manipulate EBV replication. IMPORTANCE This study shows, for the first time, that autophagy is blocked at the final degradative steps during EBV replication in several cell types. Through this block, EBV hijacks the autophagic vesicles for its intracellular transportation and enhances viral production. A better understanding of virus-host interactions could help in the design of new therapeutic approaches against EBV-associated malignancies.


PLOS ONE | 2012

Primary Effusion Lymphoma Cell Death Induced by Bortezomib and AG 490 Activates Dendritic Cells through CD91

Mara Cirone; Livia Di Renzo; Lavinia Vittoria Lotti; Valeria Conte; Pankaj Trivedi; Roberta Santarelli; Roberta Gonnella; Luigi Frati; Alberto Faggioni

To understand how cytotoxic agent-induced cancer cell death affects the immune system is of fundamental importance to stimulate immune response to counteract the high mortality due to cancer. Here we compared the immunogenicity of Primary Effusion Lymphoma (PEL) cell death induced by anticancer drug Bortezomib (Velcade) and Tyrphostin AG 490, a Janus Activated Kinase 2/signal trasducer and activator of transcription-3 (JAK2/STAT3) inhibitor. We show that both treatments were able to induce PEL apoptosis with similar kinetics and promote dendritic cells (DC) maturation. The surface expression of molecules involved in immune activation, namely calreticulin (CRT), heat shock proteins (HSP) 90 and 70 increased in dying cells. This was correlated with DC activation. We found that PEL cell death induced by Bortezomib was more effective in inducing uptake by DC compared to AG 490 or combination of both drugs. However the DC activation induced by all treatments was completely inhibited when these cells were pretreated with a neutralizing antiboby directed against the HSP90/70 and CRT common receptor, CD91. The activation of DC by Bortezomib and AG 490 treated PEL cells, as seen in the present study, might have important implications for a combined chemo and immunotherapy in such patients.


Journal of Virology | 2008

Deletion of Epstein-Barr Virus BFLF2 Leads to Impaired Viral DNA Packaging and Primary Egress as Well as to the Production of Defective Viral Particles

Marisa Granato; Regina Feederle; Antonella Farina; Roberta Gonnella; Roberta Santarelli; Birgit Hub; Alberto Faggioni; Henri Jacques Delecluse

ABSTRACT Previous genetic and biochemical studies performed with several members of the Alphaherpesvirus subfamily have shown that the UL31 and UL34 proteins are essential components of the molecular machinery that mediates the primary egress of newly assembled capsids across the nuclear membrane. Further, there is substantial evidence that BFLF2 and BFRF1, the respective positional homologs of UL31 and UL34 in the Epstein-Barr virus (EBV) genome, are also their functional homologs, i.e., that the UL31/UL34 pathway is common to distant herpesviruses. However, the low degree of protein sequence identity between UL31 and BFLF2 would argue against such a hypothesis. To further clarify this issue, we have constructed a recombinant EBV strain devoid of BFLF2 (ΔBFLF2) and show that BFLF2 is crucial for efficient virus production but not for lytic DNA replication or B-cell transformation. This defective phenotype could be efficiently restored by trans complementation with a BFLF2 expression plasmid. Detailed analysis of replicating cells by electron microscopy revealed that, as expected, ΔBFLF2 viruses not only failed to egress from the nucleus but also showed defective DNA packaging. Nonfunctional primary egress did not, however, impair the production and extracellular release of enveloped but empty viral particles that comprised L particles containing tegument-like structures and a few virus-like particles carrying empty capsids. The ΔBFLF2 and ΔUL31 phenotypes therefore only partly overlap, from which we infer that BFLF2 and UL31 have substantially diverged during evolution to fulfil related but distinct functions.


Leukemia | 2012

Differential regulation of miR-21 and miR-146a by Epstein–Barr virus-encoded EBNA2

Paola Rosato; Eleni Anastasiadou; Neha Garg; Dido Lenze; Francesco Boccellato; Sara Vincenti; Martina Severa; Eliana M. Coccia; Rachele Bigi; Mara Cirone; Elisabetta Ferretti; Antonio Francesco Campese; Michael Hummel; Luigi Frati; Carlo Presutti; Alberto Faggioni; Pankaj Trivedi

The discovery of microRNA (miR) represents a novel paradigm in RNA-based regulation of gene expression and their dysregulation has become a hallmark of many a tumor. In virally associated cancers, the host–pathogen interaction could involve alteration in miR expression. Epstein–Barr virus (EBV)-encoded EBNA2 is indispensable for the capacity of the virus to transform B cells in vitro. Here, we studied how it affects cellular miRs. Extensive miR profiling of the virus-infected and EBNA2-transfected B lymphoma cells revealed that oncomiR miR-21 is positively regulated by this viral protein. Conversely, Burkitt’s lymphoma (BL) cell lines infected with EBNA2 lacking P3HR1 strain did not show any increase in miR-21. EBNA2 increased phosphorylation of AKT and this was directly correlated with increased miR-21. In contrast, miR-146a was downregulated by EBNA2 in B lymphoma cells. Low miR-146a expression correlates with an elevated level of IRAK1 and type I interferon in EBNA2 transfectants. Taken together, the present data suggest that EBNA2 might contribute to EBV-induced B-cell transformation by altering miR expression and in particular by increasing oncomiR-like miR-21 and by affecting the antiviral responses of the innate immune system through downregulation of its key regulator miR-146a.

Collaboration


Dive into the Alberto Faggioni's collaboration.

Top Co-Authors

Avatar

Mara Cirone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Luigi Frati

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Roberta Santarelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marisa Granato

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Roberta Gonnella

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Antonio Angeloni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Pankaj Trivedi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Claudia Zompetta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Antonella Farina

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge