Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Angeloni is active.

Publication


Featured researches published by Antonio Angeloni.


Journal of Virology | 2005

Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: Interactions with BFRF1 and with the nuclear lamina

Roberta Gonnella; Antonella Farina; Roberta Santarelli; Salvatore Raffa; Regina Feederle; Roberto Bei; Marisa Granato; Andrea Modesti; Luigi Frati; Henri Jacques Delecluse; Maria Rosaria Torrisi; Antonio Angeloni; Alberto Faggioni

ABSTRACT We have reported in the accompanying paper that the BFRF1 protein of Epstein-Barr virus (EBV) is important for efficient primary viral envelopment and egress (A. Farina, R. Feederle, S. Raffa, R. Gonnella, R. Santarelli, L. Frati, A. Angeloni, M. R. Torrisi, A. Faggioni, and H.-J. Delecluse, J. Virol. 79:3703-3712). Here we describe the characterization of the product of the EBV BFLF2 gene, which belongs to a family of conserved herpesviral genes which include the UL31 genes of herpes simplex virus and of pseudorabies virus and whose products are known to interact with UL34, the positional homolog of BFRF1. BFLF2 is an early transcript and is expressed in a variety of cell lines upon EBV lytic cycle activation. Western blotting of purified virion preparations showed that BFLF2 is a component of intracellular virions but is absent from mature extracellular virions. Coimmunoprecipitation experiments indicated that BFLF2 interacts with BFRF1, which was confirmed by immunofluorescence confocal microscopy showing that the two proteins colocalize on the nuclear membrane not only upon cotransfection in epithelial cells but also during viral replication. In cells carrying an EBV mutant with the BFRF1 gene deleted (293-BFRF1-KO cells) BFLF2 expression was low, and it was restored to wild-type levels upon treatment of the cells with the proteasome inhibitor MG132. Furthermore, recomplementing the 293-BFRF1-KO cells by BFRF1 transfection restored BFLF2 expression to the wild-type level. In addition, when expressed alone BFLF2 was localized diffusely inside the nucleus, whereas in the presence of BFRF1 the two proteins colocalized at the nuclear rim. Finally, 293 epithelial cells transfected with either protein or cotransfected were analyzed by electron microscopy to investigate potential alterations in the morphology of the nuclear membrane. The ultrastructural analysis revealed that (i) BFRF1 caused duplications of the nuclear membrane, similar to those reported to occur during the course of herpesviral replication, and (ii) while BFLF2 alone did not cause any apparent alteration, coexpression of the two proteins dramatically induced profound convolutions of the duplicated nuclear membrane. Both biochemical and morphological analysis showed association of the BFRF1-BFLF2 complex with a component of the nuclear lamina, lamin B. Taken together, these results and those of the accompanying paper (Farina et al., J. Virol. 79:3703-3712) indicate an important role of BFRF1 and BFLF2 in the early steps of EBV maturation at the nuclear membrane.


Journal of Virology | 2005

BFRF1 of epstein-barr virus is essential for efficient primary viral envelopment and egress

Antonella Farina; Regina Feederle; Salvatore Raffa; Roberta Gonnella; Roberta Santarelli; Luigi Frati; Antonio Angeloni; Maria Rosaria Torrisi; Alberto Faggioni; Henri Jacques Delecluse

ABSTRACT The molecular mechanisms that underlie maturation and egress of Epstein-Barr virus (EBV) virions are only partially characterized. We have recently shown that the BFRF1 gene, the EBV positional homolog of herpes simplex virus type 1 and pseudorabies virus UL34, is expressed early during EBV lytic replication and that it is found predominantly on the nuclear membrane (A. Farina, R. Santarelli, R. Gonnella, R. Bei, R. Muraro, G. Cardinali, S. Uccini, G. Ragona, L. Frati, A. Faggioni, and A. Angeloni, J. Virol. 74:3235-3244, 2000). These data suggest that the BFRF1 protein might be involved in viral primary envelopment. To precisely determine the function of this protein, we have constructed an EBV mutant devoid of the BFRF1 gene (BFRF1-KO). 293 cells carrying BFRF1-KO showed no differences in comparison with wild-type EBV in terms of DNA lytic replication or expression of late viral proteins upon induction of the lytic cycle. However, binding assays and infection experiments using cell lines or human cord blood lymphocytes showed a clear reduction in the viral mutant titers. Complementation experiments with BFRF1-KO and a BFRF1 expression vector restored viral titers to levels similar to those for the wild-type control, showing that the modifications that we introduced were limited to the BFRF1 gene. Electron microscopic observations showed that the reduction in viral titers was due to sequestration of EBV nucleocapsids in the nuclei of lytically induced cells. This suggests that BFRF1 is involved in transport of the maturing virion across the nuclear membrane. This hypothesis was further supported by the observation that BFRF1 is present in maturing intracellular virions but not in their extracellular counterparts. This implies that BFRF1 is a key protein for EBV maturation.


Cell Transplantation | 2013

Human Adipose-Derived Stromal Cells for Cell-Based Therapies in the Treatment of Systemic Sclerosis:

Nicolò Scuderi; Simona Ceccarelli; Maria Giuseppina Onesti; Paolo Fioramonti; Chiara Guidi; Ferdinando Romano; Luigi Frati; Antonio Angeloni; Cinzia Marchese

The present study was designed to evaluate the clinical outcome of cell-based therapy with cultured adipose-derived stromal cells (ASCs) for the treatment of cutaneous manifestations in patients affected by systemic sclerosis (SSc). ASCs have an extraordinary developmental plasticity, including the ability to undergo multilineage differentiation and self-renewal. Moreover, ASCs can be easily harvested from small volumes of liposuction aspirate, showing great in vitro viability and proliferation rate. Here we isolated, characterized, and expanded ASCs, assessing both their mesenchymal origin and their capability to differentiate towards the adipogenic, osteogenic, and chondrogenic lineage. We developed an effective method for ASCs transplantation into sclerodermic patients by means of a hyaluronic acid (HA) solution, which allowed us to achieve precise structural modifications. ASCs were isolated from subcutaneous adipose tissue of six sclerodermic patients and cultured in a chemical-defined medium before autologous transplantation to restore skin sequelae. The results indicated that transplantation of a combination of ASCs in HA solution determined a significant improvement in tightening of the skin without complications such as anechoic areas, fat necrosis, or infections, thus suggesting that ASCs are a potentially valuable source of cells for skin therapy in rare diseases such as SSc and generally in skin disorders.


Biomaterials | 2008

The clinical application of autologous bioengineered skin based on a hyaluronic acid scaffold

Nicolò Scuderi; Maria Giuseppina Onesti; Giovanni Bistoni; Simona Ceccarelli; Sabrina Rotolo; Antonio Angeloni; Cinzia Marchese

The aim of this work was to generate an in vitro skin substitute harbouring autologous fibroblasts, keratinocytes and melanocytes, to establish a new one-step clinical method in problems associated with skin disorders. Here we present a case of a nine-year-old girl with a congenital giant nevus treated by surgical approach, with primary co-cultures of keratinocytes, melanocytes and fibroblasts obtained from autologous skin biopsy. Generally these lesions need to be removed to avoid the risk of transformation into malignant melanoma. With this purpose we analyzed the melanocytes contained in the new skin substitute for the presence of genetic alterations correlated to increased risk for melanoma. The organotypical cultures were designed including an engineered scaffold of a non-woven mesh of hyaluronic acid (HYAFF11). This biomaterial has been previously demonstrated to be the most suitable to maintain polarity and to support the in vitro constructs. Six dermal-epidermal skin substitutes were transplanted and 14 days after surgery the re-epithelialized area was about 90%. Our results suggest that this new dermal-epidermal construct not only reduces hospitalization time and ameliorates scar retraction, but might also represent a solution for the high risk of developing a tumour derived from the original nevus.


PLOS ONE | 2008

Silencing of Keratinocyte Growth Factor Receptor Restores 5-Fluorouracil and Tamoxifen Efficacy on Responsive Cancer Cells

Sabrina Rotolo; Simona Ceccarelli; Ferdinando Romano; Luigi Frati; Cinzia Marchese; Antonio Angeloni

Background Keratinocyte growth factor receptor (KGFR) is a splice variant of the FGFR2 gene expressed in epithelial cells. Activation of KGFR is a key factor in the regulation of physiological processes in epithelial cells such as proliferation, differentiation and wound healing. Alterations of KGFR signaling have been linked to the pathogenesis of different epithelial tumors. It has been also hypothesized that its specific ligand, KGF, might contribute to the development of resistance to 5-fluorouracil (5-FU) in epithelial cancers and tamoxifen in estrogen-positive breast cancers. Methodology/Principal Findings Small interfering RNA was transfected into a human keratinocyte cell line (HaCaT), a breast cancer derived cell line (MCF-7) and a keratinocyte primary culture (KCs) to induce selective downregulation of KGFR expression. A strong and highly specific reduction of KGFR expression was observed at both RNA (reduction = 75.7%, P = 0.009) and protein level. KGFR silenced cells showed a reduced responsiveness to KGF treatment as assessed by measuring proliferation rate (14.2% versus 39.0% of the control cells, P<0.001) and cell migration (24.6% versus 96.4% of the control cells, P = 0.009). In mock-transfected MCF-7 cells, KGF counteracts the capacity of 5-FU to inhibit cell proliferation, whereas in KGFR silenced cells KGF weakly interferes with 5-FU antiproliferative effect (11.2% versus 28.4% of the control cells, P = 0.002). The capacity of 5-FU to induce cell death is abrogated by co-treatment with KGF, whereas in KGFR silenced cells 5-FU efficiently induces cell death even combined to KGF, as determined by evaluating cell viability. Similarly, the capacity of tamoxifen to inhibit MCF-7 and KCs proliferation is highly reduced by KGF treatment and is completely restored in KGFR silenced cells (12.3% versus 45.5% of the control cells, P<0.001). Conclusions/Significance These findings suggest that selective inhibition of the KGF/KGFR pathway may provide a useful tool to ameliorate the efficacy of the therapeutic strategies for certain epithelial tumors.


Journal of Virology | 2000

The BFRF1 Gene of Epstein-Barr Virus Encodes a Novel Protein

Antonella Farina; Roberta Santarelli; Roberta Gonnella; Roberto Bei; Raffaella Muraro; Giorgia Cardinali; Stefania Uccini; Giuseppe Ragona; Luigi Frati; Alberto Faggioni; Antonio Angeloni

ABSTRACT Computer analysis of the Epstein-Barr virus (EBV) genome indicates there are ∼100 open reading frames (ORFs). Thus far about 30 EBV genes divided into the categories latent and lytic have been identified. The BamHI F region of EBV is abundantly transcribed during lytic replication. This region is highly conserved among herpesviruses, thus suggesting that some common function could be retained in the ORFs encompassed within this viral fragment. To identify putative novel proteins and possible new markers for viral replication, we focused our attention on the first rightward ORF in theBamHI F region (BFRF1). Histidine and glutathione S-transferase-tagged BFRF1 fusion proteins were synthesized to produce a mouse monoclonal antibody (MAb). Analysis of human sera revealed a high seroprevalence of antibodies to BFRF1 in patients affected by nasopharyngeal carcinoma or Burkitts lymphoma, whereas no humoral response to BFRF1 could be detected among healthy donors. An anti-BFRF1 MAb recognizes a doublet migrating at 37 to 38 kDa in cells extracts from EBV-infected cell lines following lytic cycle activation and in an EBV-negative cell line (DG75) transfected with a plasmid expressing the BFRF1 gene. Northern blot analysis allowed the detection of a major transcript of 3.7 kb highly expressed in EBV-positive lytic cycle-induced cell lines. Treatment with inhibitors of viral DNA polymerase, such as phosphonoacetic acid and acyclovir, reduced but did not abolish the transcription ofBFRF1, thus indicating that BFRF1 can be classified as an early gene. Cell fractionation experiments, as well as immunolocalization by immunofluorescence microscopy, immunohistochemistry, and immunoelectron microscopy, showed that BFRF1 is localized on the plasma membrane and nuclear compartments of the cells and is a structural component of the viral particle. Identification of BFRF1 provides a new marker with which to monitor EBV infection and might help us better understand the biology of the virus.


International Journal of Oncology | 2012

Involvement of the Src-cortactin pathway in migration induced by IGF-1 and EGF in human breast cancer cells

Silvia Mezi; Laura Todi; Errico Orsi; Antonio Angeloni; Patrizia Mancini

Cancer cells need to become motile in order to escape the primary tumor and move to distant areas to form metastasis. They move as single cells or as a group, following different stimuli, including growth factors. Among them, insulin-like growth factor‑1 (IGF-1) and epidermal growth factor (EGF) and their receptors have been implicated in the development and progression of human breast carcinoma. In this report, we provide evidence that the tyrosine kinase Src is responsible for migration promoted by both IGF-1 and EGF in MDA-MB-231 and MCF7 cells, although with a different effect. Moreover, both IGF-1 and EGF induce reorganization of actin cytoskeleton in lamellipodia and membrane ruffles in a time- and Src-dependent manner. Furthermore, we analyzed the tyrosine phosphorylation status of the actin-binding protein cortactin upon growth factor stimulation, showing that even the activation of cortactin is time- and Src-dependent. In addition, immunofluorescence analysis with anti-paxillin antibody reveals that, after treatment with growth factors, tyrosine phosphorylated cortactin is localized on the plasma membrane in correspondence of focal adhesions. Collectively, our findings suggest a crucial role for Src-mediated activation of cortactin in cell migration, reorganization of actin cytoskeleton and phosphotyrosine cortactin localization to the focal adhesions in human breast cancer cell lines upon both IGF-1 and EGF stimulation.


Cancers | 2014

Standard of Care and Promising New Agents for Triple Negative Metastatic Breast Cancer

Patrizia Mancini; Antonio Angeloni; Emanuela Risi; Errico Orsi; Silvia Mezi

Triple negative breast cancer (TNBC) is a cluster of heterogeneous diseases, all of them sharing the lack of expression of estrogen and progesterone receptors and HER2 protein. They are characterized by different biological, molecular and clinical features, including a poor prognosis despite the increased sensitivity to the current cytotoxic therapies. Several studies have identified important molecular features which enable further subdivision of this type of tumor. We are drawing from genomics, transcription and translation analysis at different levels, to improve our knowledge of the molecular alterations along the pathways which are activated during carcinogenesis and tumor progression. How this information should be used for the rational selection of therapy is an ongoing challenge and the subject of numerous research studies in progress. Currently, the vascular endothelial growth factor (VEGF), poly (ADP-ribose) polymerase (PARP), HSP90 and Aurora inhibitors are most used as targeting agents in metastatic setting clinical trials. In this paper we will review the current knowledge about the genetic subtypes of TNBC and their different responses to conventional therapeutic strategies, as well as to some new promising molecular target agents, aimed to achieve more tailored therapies.


AIDS Research and Human Retroviruses | 1999

The benign cystic lymphoepithelial lesion of the parotid gland is a viral reservoir in HIV type 1-infected patients

Stefania Uccini; E. Riva; Guido Antonelli; Giampiero D'Offizi; Alessandra Prozzo; Alberto Angelici; Alberto Faggioni; Antonio Angeloni; Maria Rosaria Torrisi; Massimo Gentile; Carlo D. Baroni; Luigi Ruco

The presence of HIV-1 in cystic fluid aspirates from six cases of benign cystic lymphoepithelial lesion (BLL) of the parotid gland, a rare disorder affecting HIV-1-infected patients, has been investigated. HIV-1 p24 protein was present at a concentration ranging from 3 to 15 ng/ml, while it was undetectable in the peripheral blood of the same patients. The number of RNA copies of HIV-1 in the cystic fluids was high, ranging from 0.5 x 10(7) to 7.2 x 10(7) RNA copies/ml. BLL cystic fluid aspirates, despite the high level of HIV-1 RNA, were found to contain only a few infectious virions. The low infectivity correlated with the infrequent detection by electron microscopy of complete HIV-1 particles. The pathogenic mechanism leading to virus accumulation in the cystic fluid was studied by immunohistochemistry of tissue sections. p24 protein was associated with DRC-1+/S-100+ follicular dendritic reticulum cells, which were also present within the cystic cavities. Our findings are consistent with the possibility that the large amounts of virus present in the fluid derive from continuous shedding of HIV-1-infected cells from the surrounding lymphoid tissue.


PLOS ONE | 2014

Gene Expression Profile of Patients with Mayer-Rokitansky-Küster-Hauser Syndrome: New Insights into the Potential Role of Developmental Pathways

Cristina Nodale; Simona Ceccarelli; Mariateresa Giuliano; Marcella Cammarota; Sirio D’Amici; Enrica Vescarelli; Filippo Bellati; Pierluigi Benedetti Panici; Ferdinando Romano; Antonio Angeloni; Cinzia Marchese

Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is a rare disease characterized by congenital aplasia of uterus and vagina. Although many studies have investigated several candidate genes, up to now none of them seem to be responsible for the aetiology of the syndrome. In our study, we identified differences in gene expression profile of in vitro cultured vaginal tissue of MRHKS patients using whole-genome microarray analysis. A group of eight out of sixteen MRKHS patients that underwent reconstruction of neovagina with an autologous in vitro cultured vaginal tissue were subjected to microarray analysis and compared with five healthy controls. Results obtained by array were confirmed by qRT-PCR and further extended to other eight MRKHS patients. Gene profiling of MRKHS patients delineated 275 differentially expressed genes, of which 133 downregulated and 142 upregulated. We selected six deregulated genes (MUC1, HOXC8, HOXB2, HOXB5, JAG1 and DLL1) on the basis of their fold change, their differential expression in most patients and their relevant role in embryological development. All patients showed upregulation of MUC1, while HOXB2 and HOXB5 were downregulated, as well as Notch ligands JAG1 and DLL1 in the majority of them. Interestingly, HOXC8 was significantly upregulated in 47% of patients, with a differential expression only in MRKHS type I patients. Taken together, our results highlighted the dysregulation of developmental genes, thus suggesting a potential alteration of networks involved in the formation of the female reproductive tract and providing a useful clue for understanding the pathophysiology of MRKHS.

Collaboration


Dive into the Antonio Angeloni's collaboration.

Top Co-Authors

Avatar

Alberto Faggioni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Luigi Frati

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Simona Ceccarelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Cinzia Marchese

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Roberta Santarelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Antonella Farina

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Enrica Vescarelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Roberta Gonnella

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Emanuela Anastasi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Ferdinando Romano

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge