Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Fernández-Medarde is active.

Publication


Featured researches published by Alberto Fernández-Medarde.


Genes & Cancer | 2011

Ras in Cancer and Developmental Diseases

Alberto Fernández-Medarde; Eugenio Santos

Somatic, gain-of-function mutations in ras genes were the first specific genetic alterations identified in human cancer about 3 decades ago. Studies during the last quarter century have characterized the Ras proteins as essential components of signaling networks controlling cellular proliferation, differentiation, or survival. The oncogenic mutations of the H-ras, N-ras, or K-ras genes frequently found in human tumors are known to throw off balance the normal outcome of those signaling pathways, thus leading to tumor development. Oncogenic mutations in a number of other upstream or downstream components of Ras signaling pathways (including membrane RTKs or cytosolic kinases) have been detected more recently in association with a variety of cancers. Interestingly, the oncogenic Ras mutations and the mutations in other components of Ras/MAPK signaling pathways appear to be mutually exclusive events in most tumors, indicating that deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis. In contrast to sporadic tumors, separate studies have identified germline mutations in Ras and various other components of Ras signaling pathways that occur in specific association with a number of different familial, developmental syndromes frequently sharing common phenotypic cardiofaciocutaneous features. Finally, even without being a causative force, defective Ras signaling has been cited as a contributing factor to many other human illnesses, including diabetes and immunological and inflammatory disorders. We aim this review at summarizing and updating current knowledge on the contribution of Ras mutations and altered Ras signaling to development of various tumoral and nontumoral pathologies.


Molecular and Cellular Biology | 2001

Targeted Genomic Disruption of H-ras and N-ras, Individually or in Combination, Reveals the Dispensability of Both Loci for Mouse Growth and Development

Luis M. Esteban; Carlos Vicario-Abejón; Pedro Fernandez-Salguero; Alberto Fernández-Medarde; Nalini Swaminathan; Kate Yienger; Eva Lopez; Marcos Malumbres; Ron McKay; Jerrold M. Ward; Angel Pellicer; Eugenio Santos

ABSTRACT Mammalian cells harbor three highly homologous and widely expressed members of the ras family (H-ras, N-ras, and K-ras), but it remains unclear whether they play specific or overlapping cellular roles. To gain insight into such functional roles, here we generated and analyzed H-ras null mutant mice, which were then also bred with N-ras knockout animals to ascertain the viability and properties of potential double null mutations in both loci. Mating among heterozygous H-ras+/− mice produced H-ras −/− offspring with a normal Mendelian pattern of inheritance, indicating that the loss of H-rasdid not interfere with embryonic and fetal viability in the uterus. Homozygous mutant H-ras −/− mice reached sexual maturity at the same age as their littermates, and both males and females were fertile. Characterization of lymphocyte subsets in the spleen and thymus showed no significant differences between wild-type and H-ras −/− mice. Analysis of neuronal markers in the brains of knockout and wild-type H-ras mice showed that disruption of this locus did not impair or alter neuronal development. Breeding between our H-ras mutant animals and previously available N-ras null mutants gave rise to viable double knockout (H-ras −/−/N-ras −/−) offspring expressing only K-ras genes which grew normally, were fertile, and did not show any obvious phenotype. Interestingly, however, lower-than-expected numbers of adult, double knockout animals were consistently obtained in Mendelian crosses between heterozygous N-ras/H-ras mice. Our results indicate that, as for N-ras, H-ras gene function is dispensable for normal mouse development, growth, fertility, and neuronal development. Additionally, of the three ras genes, K-ras appears to be not only essential but also sufficient for normal mouse development.


Nature Genetics | 2010

A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25

Pirro G. Hysi; Terri L. Young; David A. Mackey; Toby Andrew; Alberto Fernández-Medarde; Abbas M Solouki; Alex W. Hewitt; Stuart Macgregor; Johannes R. Vingerling; Yi-Ju Li; M. Kamran Ikram; Lee Yiu Fai; Pak Sham; Lara Manyes; A. Porteros; Margarida C. Lopes; Francis Carbonaro; Samantha J. Fahy; Nicholas G. Martin; Cornelia M. van Duijn; Tim D. Spector; Jugnoo S. Rahi; Eugenio Santos; Caroline C. W. Klaver; Christopher J. Hammond

Myopia and hyperopia are at opposite ends of the continuum of refraction, the measure of the eye′s ability to focus light, which is an important cause of visual impairment (when aberrant) and is a highly heritable trait. We conducted a genome-wide association study for refractive error in 4,270 individuals from the TwinsUK cohort. We identified SNPs on 15q25 associated with refractive error (rs8027411, P = 7.91 × 10−8). We replicated this association in six adult cohorts of European ancestry with a combined 13,414 individuals (combined P = 2.07 × 10−9). This locus overlaps the transcription initiation site of RASGRF1, which is highly expressed in neurons and retina and has previously been implicated in retinal function and memory consolidation. Rasgrf1−/− mice show a heavier average crystalline lens (P = 0.001). The identification of a susceptibility locus for refractive error on 15q25 will be important in characterizing the molecular mechanism responsible for the most common cause of visual impairment.


Proceedings of the National Academy of Sciences of the United States of America | 2012

RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release

David Stacey; Ainhoa Bilbao; Matthieu Maroteaux; Tianye Jia; Alanna C. Easton; Sophie Longueville; Charlotte Nymberg; Tobias Banaschewski; Gareth J. Barker; Christian Büchel; Fabiana Carvalho; Patricia J. Conrod; Sylvane Desrivières; Mira Fauth-Bühler; Alberto Fernández-Medarde; Herta Flor; Jürgen Gallinat; Hugh Garavan; Arun L.W. Bokde; Andreas Heinz; Bernd Ittermann; Mark Lathrop; Claire Lawrence; Eva Loth; Anbarasu Lourdusamy; Karl Mann; Jean-Luc Martinot; Frauke Nees; Miklós Palkovits; Tomáš Paus

The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca2+-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2−/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2−/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the IA potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.


Biochimica et Biophysica Acta | 2011

The RasGrf family of mammalian guanine nucleotide exchange factors.

Alberto Fernández-Medarde; Eugenio Santos

RasGrf1 and RasGrf2 are highly homologous mammalian guanine nucleotide exchange factors which are able to activate specific Ras or Rho GTPases. The RasGrf genes are preferentially expressed in the central nervous system, although specific expression of either locus may also occur elsewhere. RasGrf1 is a paternally-expressed, imprinted gene that is expressed only after birth. In contrast, RasGrf2 is not imprinted and shows a wider expression pattern. A variety of isoforms for both genes are also detectable in different cellular contexts. The RasGrf proteins exhibit modular structures composed by multiple domains including CDC25H and DHPH motifs responsible for promoting GDP/GTP exchange, respectively, on Ras or Rho GTPase targets. The various domains are essential to define their intrinsic exchanger activity and to modulate the specificity of their functional activity so as to connect different upstream signals to various downstream targets and cellular responses. Despite their homology, RasGrf1 and RasGrf2 display differing target specificities and non overlapping functional roles in a variety of signaling contexts related to cell growth and differentiation as well as neuronal excitability and response or synaptic plasticity. Whereas both RasGrfs are activatable by glutamate receptors, G-protein-coupled receptors or changes in intracellular calcium concentration, only RasGrf1 is reported to be activated by LPA, cAMP, or agonist-activated Trk and cannabinoid receptors. Analysis of various knockout mice strains has uncovered a specific functional contribution of RasGrf1 in processes of memory and learning, photoreception, control of post-natal growth and body size and pancreatic β-cell function and glucose homeostasis. For RasGrf2, specific roles in lymphocyte proliferation, T-cell signaling responses and lymphomagenesis have been described.


Neuroscience | 2007

Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning

Alberto Fernández-Medarde; A. Porteros; J. de las Rivas; Alejandro Núñez; José J. Fuster; Eugenio Santos

We used manual macrodissection or laser capture microdissection (LCM) to isolate tissue sections of the hippocampus area of Ras-GRF1 wild type and knockout mice brains, and analyzed their transcriptional patterns using commercial oligonucleotide microarrays. Comparison between the transcriptomes of macrodissected and microdissected samples showed that the LCM samples allowed detection of significantly higher numbers of differentially expressed genes, with higher statistical rates of significance. These results validate LCM as a reliable technique for in vivo genomic studies in the brain hippocampus, where contamination by surrounding areas (not expressing Ras-GRF1) increases background noise and impairs identification of differentially expressed genes. Comparison between wild type and knockout LCM hippocampus samples revealed that Ras-GRF1 elimination caused significant gene expression changes, mostly affecting signal transduction and related neural processes. The list of 36 most differentially expressed genes included loci concerned mainly with Ras/G protein signaling and cytoskeletal organization (i.e. 14-3-3gamma/zeta, Kcnj6, Clasp2) or related, cross-talking pathways (i.e. jag2, decorin, strap). Consistent with the phenotypes shown by Ras-GRF1 knockout mice, many of these differentially expressed genes play functional roles in processes such as sensory development and function (i.e. Sptlc1, antiquitin, jag2) and/or neurological development/neurodegeneration processes affecting memory and learning. Indeed, potential links to neurodegenerative diseases such as Alzheimer disease (AD) or Creutzfeldt-Jacobs disease (CJD), have been reported for a number of differentially expressed genes identified in this study (Ptma, Aebp2, Clasp2, Hebp1, 14-3-3gamma/zeta, Csnk1delta, etc.). These data, together with the previously described role of IRS and insulin (known Ras-GRF1 activators) in AD, warrant further investigation of a potential functional link of Ras-GRF1 to neurodegenerative processes.


Molecular and Cellular Biology | 2002

Targeted Disruption of Ras-Grf2 Shows Its Dispensability for Mouse Growth and Development

Alberto Fernández-Medarde; Luis M. Esteban; Alejandro Núñez; A. Porteros; Lino Tessarollo; Eugenio Santos

ABSTRACT The mammalian Grf1 and Grf2 proteins are Ras guanine nucleotide exchange factors (GEFs) sharing a high degree of structural homology, as well as an elevated expression level in central nervous system tissues. Such similarities raise questions concerning the specificity and/or redundancy at the functional level between the two Grf proteins. grf1-null mutant mice have been recently described which showed phenotypic growth reduction and long-term memory loss. To gain insight into the in vivo function of Grf2, we disrupted its catalytic CDC25-H domain by means of gene targeting. Breeding among grf2+/− animals gave rise to viable grf2 −/− adult animals with a normal Mendelian pattern, suggesting that Grf2 is not essential for embryonic and adult mouse development. In contrast to Grf1-null mice, analysis of grf2 −/− litters showed similar size and weight as their heterozygous or wild-type grf2 counterparts. Furthermore, adult grf2 −/− animals reached sexual maturity at the same age as their wild-type littermates and showed similar fertility levels. No specific pathology was observed in adult Grf2-null animals, and histopathological studies showed no observable differences between null mutant and wild-type Grf2 mice. These results indicate that grf2 is dispensable for mouse growth, development, and fertility. Furthermore, analysis of double grf1/grf2 null animals did not show any observable phenotypic difference with single grf1 −/− animals, further indicating a lack of functional overlapping between the two otherwise highly homologous Grf1 and Grf2 proteins.


Molecular and Cellular Biology | 2000

Ras-Guanine Nucleotide Exchange Factor Sos2 Is Dispensable for Mouse Growth and Development

Luis M. Esteban; Alberto Fernández-Medarde; Eva Lopez; Kate Yienger; Carmen Guerrero; Jerrold M. Ward; Lino Tessarollo; Eugenio Santos

ABSTRACT The mammalian sos1 and sos2 genes encode highly homologous members of the Son-of-sevenless family of guanine nucleotide exchange factors. They are ubiquitously expressed and play key roles in transmission of signals initiated by surface protein tyrosine kinases that are transduced into the cell through the action of membrane-associated Ras proteins. Recent reports showed that targeted disruption of the sos1 locus results in embryonic lethality. To gain insight into the in vivo function ofsos2, we disrupted its catalytic CDC25-H domain by means of gene targeting techniques. Mating among heterozygous sos2+/− mice produced viablesos2−/− offspring with a normal Mendelian pattern of inheritance, indicating that the loss of sos2does not interfere with embryo viability in the uterus. Adult homozygous mutant sos2−/− mice reached sexual maturity at the same age as their wild-type littermates, and both male and female null mutants were fertile. Histopathological analysis showed no observable differences between mutant and wild-type mice. Our results show that unlike the case for sos1,sos2 gene function is dispensable for normal mouse development, growth, and fertility.


Journal of Neurochemistry | 2009

RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations

Alberto Fernández-Medarde; R. Barhoum; Raquel Riquelme; A. Porteros; Alejandro Núñez; Alberto de Luis; Javier De Las Rivas; Pedro de la Villa; Isabel Varela‐Nieto; Eugenio Santos

RasGRF1 null mutant mice display impaired memory/learning and their hippocampus transcriptomic pattern includes a number of differentially expressed genes playing significant roles in sensory development and function. Odour avoidance and auditory brainstem response tests yielded normal results but electroretinographic analysis showed severe light perception impairment in the RasGRF1 knockouts. Whereas no structural alterations distinguished the retinas of wild‐type and knockout mice, microarray transcriptional analysis identified at least 44 differentially expressed genes in the retinas of these Knockout animals. Among these, Crb1, Pttg1, Folh1 and Myo7a have been previously related to syndromes involving retina degeneration. Interestingly, over‐expression of Folh1 would be expected to result in accumulation of its enzymatic product N‐acetyl‐aspartate, an event known to be linked to Canavan disease, a human cerebral degenerative syndrome often involving blindness and hearing loss. Consistently, in vivo brain nuclear magnetic resonance spectroscopy identified higher levels of N‐acetyl‐aspartate in our RasGRF1−/− mice and immunohistochemical analysis detected reduced levels of aspartoacylase, the enzyme which degrades N‐acetyl‐aspartate. These studies demonstrate for the first time the functional relevance of Ras signalling in mammalian photoreception and warrant further analysis of RasGRF1 Knockout mice as potential models to analyse molecular mechanisms underlying defective photoreception human diseases.


Oncogene | 2004

C3G-mediated suppression of oncogene-induced focus formation in fibroblasts involves inhibition of ERK activation, cyclin A expression and alterations of anchorage-independent growth.

Carmen Guerrero; Susana Martín-Encabo; Alberto Fernández-Medarde; Eugenio Santos

We showed previously that exogenous overexpression of C3G, a guanine nucleotide releasing factor (GEF) for Rap1 and R-Ras proteins, blocks the focus-forming activity of cotransfected, activated, sis, ras and v-raf oncogenes in NIH 3T3 cells. In this report, we show that C3G also interferes with dbl and R-Ras focus-forming activity and demonstrate that the transformation suppressor ability of C3G maps to its Crk-binding region (SH3-b domain). Using full-length C3G and C3GΔCat mutant, lacking catalytic domain, we showed here that overexpression of cotransfected C3G or C3GΔCat inhibited oncogenic Hraslys12-mediated phosphorylation of ERK, without altering Ras and Raf-1 kinase activation. We also showed that, overexpressed C3G and C3GΔCat inhibited the viability of oncogenic Ras-induced colonies in soft agar, indicating that C3G interferes with the anchorage-independent growth of Ras-transformed cells in a Rap1-independent manner. Consistent with both observations, overexpression of exogenous C3G and C3GΔCat also caused downregulation of Ras-induced cyclin A expression. Altogether, our results indicate that C3G interferes with at least two separate aspects of oncogenic transformation – cell cycle progression and loss of contact inhibition – and that these inhibitory effects probably account for its transformation suppressor activity.

Collaboration


Dive into the Alberto Fernández-Medarde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Porteros

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Jimeno

University of California

View shared research outputs
Top Co-Authors

Avatar

Luis M. Esteban

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lara Manyes

University of Salamanca

View shared research outputs
Researchain Logo
Decentralizing Knowledge