Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Fole is active.

Publication


Featured researches published by Alberto Fole.


Neurobiology of Learning and Memory | 2011

High-fat diets impair spatial learning in the radial-arm maze in mice

Ismael Valladolid-Acebes; Paula Stucchi; Victoria Cano; María S. Fernández-Alfonso; Beatriz Merino; Marta Gil-Ortega; Alberto Fole; Lidia Morales; Mariano Ruiz-Gayo; N. Del Olmo

It has been suggested that hyperglycemia and insulin resistance triggered by energy-dense diets can account for hippocampal damage and deficits of cognitive behaviour. We wonder if the impairment of learning and memory processes detected in diet-induced obese (DIO) mice is linked to diet composition itself. With this purpose we have evaluated learning performance in mice undergoing a short-term high-fat (HF) treatment, which leads to a pre-obese state characterized by increased adiposity without significant changes of glucose and insulin plasma levels. C57BL/6J mice were fed either a HF (45 kcal% from fat) or control diet (10 kcal% from fat) during 8 weeks. Learning performance was evaluated by using the four-arm baited version of the eight-arm radial maze test (RAM). Mice were trained to learn the RAM protocol and then memory was tested at different time-points. Time spent to consume food placed in baited arms and errors committed to find them were measured in all sessions. DIO mice significantly spent more time in learning the task and made a greater number of errors than controls. Moreover, retention tests revealed that both working and total memory errors were also more numerous in DIO mice. The current results show that short-term DIO impairs spatial learning and suggest that impairment of hippocampal learning elicited by HF diets might be perceptible before metabolic alterations linked to obesity develop.


American Journal of Physiology-endocrinology and Metabolism | 2012

High-fat diets induce changes in hippocampal glutamate metabolism and neurotransmission.

Ismael Valladolid-Acebes; Beatriz Merino; Antonio Principato; Alberto Fole; Coral Barbas; María P. Lorenzo; Antonia García; Nuria Del Olmo; Mariano Ruiz-Gayo; Victoria Cano

Obesity and high-fat (HF) diets have a deleterious impact on hippocampal function and lead to impaired synaptic plasticity and learning deficits. Because all of these processes need an adequate glutamatergic transmission, we have hypothesized that nutritional imbalance triggered by these diets might eventually concern glutamate (Glu) neural pathways within the hippocampus. Glu is withdrawn from excitatory synapses by specific uptake mechanisms involving neuronal (EAAT-3) and glial (GLT-1, GLAST) transporters, which regulate the time that synaptically released Glu remains in the extracellular space and, consequently, the duration and location of postsynaptic receptor activation. The goal of the present study was to evaluate in mouse hippocampus the effect of a short-term high-fat dietary treatment on 1) Glu uptake kinetics, 2) the density of Glu carriers and Glu-degrading enzymes, 3) the density of Glu receptor subunits, and 4) synaptic transmission and plasticity. Here, we show that HF diet triggers a 50% decrease of the Michaelis-Menten constant together with a 300% increase of the maximal velocity of the uptake process. Glial Glu carriers GLT-1 and GLAST were upregulated in HF mice (32 and 27%, respectively), whereas Glu-degrading enzymes glutamine synthase and GABA-decarboxilase appeared to be downregulated in these animals. In addition, HF diet hippocampus displayed diminished basal synaptic transmission and hindered NMDA-induced long-term depression (NMDA-LTD). This was coincident with a reduced density of the NR2B subunit of NMDA receptors. All of these results are compatible with the development of leptin resistance within the hippocampus. Our data show that HF diets upregulate mechanisms involved in Glu clearance and simultaneously impair Glu metabolism. Neurochemical changes occur concomitantly with impaired basal synaptic transmission and reduced NMDA-LTD. Taken together, our results suggest that HF diets trigger neurochemical changes, leading to a desensitization of NMDA receptors within the hippocampus, which might account for cognitive deficits.


Neurobiology of Learning and Memory | 2013

Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin?

Ismael Valladolid-Acebes; Alberto Fole; Miriam Martín; Lidia Morales; M. Victoria Cano; Mariano Ruiz-Gayo; Nuria Del Olmo

Recent evidence has established that consumption of high-fat diets (HFD) is associated with deficits in hippocampus-dependent memory. Adolescence is an important period for shaping learning and memory acquisition that could be particularly sensitive to the detrimental effects of HFD. In the current study we have administered this kind of diets to both adolescent (5-week old) and young adult (8-week old) male C57BL mice during 8 weeks and we have evaluated its effect on (i) spatial memory performance in the novel location recognition (NLR) paradigm, and (ii) spine density and neural cell adhesion molecule (NCAM) expression in hippocampal CA1 pyramidal neurons. In order to characterize the eventual involvement of central leptin receptors we have also investigated the functionality of leptin receptors within the hippocampus. Here we report that animals that started to consume HFD during the adolescence were less efficient than their control counterparts in performing spatial memory tasks. In contrast to that, mice that were submitted to HFD during the young adult period displayed intact performance in the NLR test. In mice receiving HFD from the adolescence, the behavioral impairment was accompanied by an increase of dendritic spine density in CA1 pyramidal neurons that correlated with the up-regulation of neural cell adhesion molecule (NCAM) in this area. Deficits in spatial memory occurred concomitantly with a desensitization of the proteinkinase B (Akt) pathway coupled to hippocampal leptin receptors. In contrast, the STAT3 pathway remained unaffected by HFD. All effects of HFD were long-lasting because they remained intact even after 5 weeks of food restriction. Our results provide further evidence of the susceptibility of the hippocampus to HFD in adolescent individuals and suggest that leptin signaling integrity in this brain area is pivotal for memory performance.


PLOS ONE | 2012

Shift of Circadian Feeding Pattern by High-Fat Diets Is Coincident with Reward Deficits in Obese Mice

Lidia Morales; Nuria Del Olmo; Ismael Valladolid-Acebes; Alberto Fole; Victoria Cano; Beatriz Merino; Paula Stucchi; Daniela Ruggieri; Laura López; Luis F. Alguacil; Mariano Ruiz-Gayo

Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern has been shown to be a cause of HF-induced overweight and obesity. Our hypothesis deals with the eventual link between the rewarding properties of food and the circadian distribution of meals. We have investigated the effect of circadian feeding pattern on reward circuits by means of the conditioned-place preference (CPP) paradigm and we have characterized the rewarding properties of natural (food) and artificial (cocaine) reinforcers both in free-feeding ad libitum HF mice and in HF animals submitted to a re-organized feeding schedule based on the standard feeding behavior displayed by mice feeding normal chow (“forced synchronization”). We demonstrate that i) ad libitum HF diet attenuates cocaine and food reward in the CPP protocol, and ii) forced synchronization of feeding prevents this reward deficit. Our study provides further evidence that the rewarding impact of food with low palatability is diminished in mice exposed to a high-fat diet and strongly suggest that the decreased sensitivity to chow as a positive reinforcer triggers a disorganized feeding pattern which might account for metabolic disorders leading to obesity.


Neurobiology of Learning and Memory | 2011

Effects of chronic cocaine administration on spatial learning and hippocampal spine density in two genetically different strains of rats

Alberto Fole; Carmen González-Martín; Carla Huarte; Luis F. Alguacil; Emilio Ambrosio; Nuria Del Olmo

Lewis and Fischer-344 rats have been proposed as an addiction model because of their differences in addiction behaviour. It has been suggested that drug addiction is related to learning and memory processes and depends on individual genetic background. We have evaluated learning performance using the eight-arm radial maze (RAM) in Lewis and Fischer-344 adult rats undergoing a chronic treatment with cocaine. In order to study whether morphological alterations were involved in the possible changes in learning after chronic cocaine treatment, we counted the spine density in hippocampal CA1 neurons from animals after the RAM protocol. Our results showed that Fischer-344 rats significantly took more time to carry out test acquisition and made a greater number of errors than Lewis animals. Nevertheless, cocaine treatment did not induce changes in learning and memory processes in both strains of rats. These facts indicate that there are genetic differences in spatial learning and memory that are not modified by the chronic treatment with cocaine. Moreover, hippocampal spine density is cocaine-modulated in both strains of rats. In conclusion, cocaine induces similar changes in hippocampal neurons morphology that are not related to genetic differences in spatial learning in the RAM protocol used here.


Addiction Biology | 2013

Periadolescent amphetamine treatment causes transient cognitive disruptions and long‐term changes in hippocampal LTP depending on the endogenous expression of pleiotrophin

Esther Gramage; Nuria del Olmo; Alberto Fole; Yasmina B. Martín; Gonzalo Herradón

Amphetamine treatment during adolescence causes long‐term cognitive deficits in rats. Pleiotrophin (PTN) is a cytokine with important roles in the modulation of synaptic plasticity, whose levels of expression are significantly regulated by amphetamine administration. To test the possibility that the long‐term consequences of periadolescent amphetamine treatment cross species and, furthermore, to test the hypothesis that PTN could be one of the factors involved in the adult cognitive deficits observed after periadolescent amphetamine administrations, we comparatively studied the long‐term consequences of periadolescent amphetamine treatment (3 mg/kg intraperitoneal, daily during 10 days) in normal wild‐type (PTN+/+) and in PTN genetically deficient (PTN−/−) mice. Within the first week after cessation of treatment, significant deficits in the passive avoidance and Y‐maze tests were only observed in amphetamine‐pretreated PTN−/− mice. However, 13 and 26 days after the last administration, we did not find significant differences in Y‐maze between amphetamine‐ and saline‐pretreated PTN−/− mice. In addition, we did not find any genotype‐ or treatment‐related anxiogenic‐ or depressive‐like behaviour in adult mice. Furthermore, we observed a significantly enhanced long‐term potentiation (LTP) in CA1 hippocampal slices from saline‐pretreated PTN−/− mice compared with saline‐pretreated PTN+/+ mice. Interestingly, amphetamine pre‐treatment during adolescence significantly enhanced LTP in adult PTN+/+ mice but did not cause any effect in PTN−/− mice, suggesting LTP mechanisms saturation in naïve PTN−/− mice. The data demonstrate that periadolescent amphetamine treatment causes transient cognitive deficits and long‐term alterations of hippocampal LTP depending on the endogenous expression of PTN.


Neuroscience | 2011

DEPOTENTIATION OF HIPPOCAMPAL LONG-TERM POTENTIATION DEPENDS ON GENETIC BACKGROUND AND IS MODULATED BY COCAINE SELF-ADMINISTRATION

Miguel Miguéns; Santiago M. Coria; Alejandro Higuera-Matas; Alberto Fole; Emilio Ambrosio; N. Del Olmo

Lewis (LEW) and Fischer 344 (F344) rats differ in their response to drugs and are frequently used as an experimental model to study vulnerability to drug addiction. We have previously reported that significant differences in hippocampal synaptic plasticity exist between LEW and F344 rats after non-contingent chronic cocaine administration. However, given the several biochemical differences between contingent and non-contingent administration of drugs, we have studied here the possible genetic differences in synaptic plasticity after contingent cocaine self-administration. LEW and F344 animals self-administered cocaine (1 mg/kg i.v.) or saline under a fixed ratio 1 schedule of reinforcement for 20 days. After self-administration, electrophysiological experiments were carried out in which hippocampal slices were tetanized with three high frequency pulses in order to induce long-term potentiation (LTP). After a 20 min period of LTP stabilization, a train of low frequency stimulation (LFS; 900 pulses, 1 Hz) was applied to induce depotentiation of LTP. Data showed no differences between cocaine self-administered LEW or F344 rats in the induction of saturated-LTP compared to saline animals. LEW saline self-administered rats showed normal LTP depotentiation whereas cocaine self-administration impaired depotentiation in this rat strain. In the F344 strain, depotentiation of saturated-LTP was impaired both in saline and cocaine self-administered rats. The present results corroborate previous findings showing differences in basal hippocampal synaptic plasticity between LEW and F344 rats. These differences seem to modulate cocaine effects in a manner independent of contingency of drug administration.


European Neuropsychopharmacology | 2014

Cocaine facilitates protein synthesis-dependent LTP: The role of metabotropic glutamate receptors

Alberto Fole; Miguel Miguéns; Alejandro Higuera-Matas; Luis F. Alguacil; Emilio Ambrosio; N. Del Olmo

Cocaine addiction alters synaptic plasticity in many brain areas involved in learning and memory processes, including the hippocampus. Long-term potentiation (LTP) is one of the best studied examples of hippocampal synaptic plasticity and it is considered as one of the molecular basis of learning and memory. We previously demonstrated that in the presence of cocaine, a long lasting form of hippocampal LTP is induced by a single pulse of high frequency stimulation, which in normal conditions evokes only an early form of LTP. In this study, we further explore the molecular basis of this modulation of synaptic plasticity by cocaine. By performing pharmacological experiments on hippocampal slices, we were able to show that cocaine converts early LTP to a form of LTP dependent on protein synthesis, probably through the cAMP-dependent protein kinase and extracellular signal-regulated kinase signaling cascades. We also found that metabotropic glutamate receptors are involved in this phenomenon. These studies further clarify the molecular machinery used by cocaine to alter synaptic plasticity and modulate learning and memory processes.


Psychopharmacology | 2014

MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density

Sonia Abad; Alberto Fole; Nuria del Olmo; David Pubill; Mercè Pallàs; Felix Junyent; Jorge Camarasa; A. Camins; Elena Escubedo

ObjectivesAddictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes.Methods and resultsAdolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery.ConclusionsThis study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.


Neurobiology of Learning and Memory | 2015

Effects of chronic cocaine treatment during adolescence in Lewis and Fischer-344 rats: Novel location recognition impairment and changes in synaptic plasticity in adulthood

Alberto Fole; Miriam Martín; Lidia Morales; N. Del Olmo

The use of Lewis (LEW) together with Fischer-344 (F344) rats has been proposed as an addiction model because of the addiction behavior differences of these two strains. We have previously suggested that these differences could be related to learning and memory processes and that they depend on the genetic background of these two strains of rats. Adolescence is a period of active synaptic remodeling, plasticity and particular vulnerability to the effects of environmental insults such as drugs of abuse. We have evaluated spatial memory using novel location recognition in LEW and F344 adult rats undergoing a chronic treatment with cocaine during adolescence or adulthood. In order to study whether synaptic plasticity mechanisms were involved in the possible changes in learning after chronic cocaine treatment, we carried out electrophysiological experiments in hippocampal slices from treated animals. Our results showed that, in LEW cocaine-treated rats, hippocampal memory was only significantly impaired when the drug was administered during adolescence whereas adult administration did not produce any detrimental effect in spatial memory measured in this protocol. Moreover, F344 rats showed clear difficulties carrying out the protocol even in standard conditions, confirming the spatial memory problems observed in previous reports and demonstrating the genetic differences in spatial learning and memory. Our experiments show that the effects in behavioral experiments are related to synaptic plasticity mechanisms. Long-term depression induced by the glutamate agonist NMDA (LTD-NMDA) is partially abolished in cocaine-treated animals in hippocampal slices from LEW rats. Hippocampal LTD-NMDA is partially inhibited in F344 animals regardless of whether saline or cocaine administration, suggesting the lack of plasticity of this strain that could be related to the inability of these animals to carry out the novel object location protocol.

Collaboration


Dive into the Alberto Fole's collaboration.

Top Co-Authors

Avatar

Emilio Ambrosio

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Mariano Ruiz-Gayo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Nuria Del Olmo

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Miguéns

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Victoria Cano

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alejandro Higuera-Matas

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

N. Del Olmo

National University of Distance Education

View shared research outputs
Researchain Logo
Decentralizing Knowledge