Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nuria Del Olmo is active.

Publication


Featured researches published by Nuria Del Olmo.


Neuropharmacology | 2002

Two new actions of topiramate: inhibition of depolarizing GABAA-mediated responses and activation of a potassium conductance

Ana I. Herrero; Nuria Del Olmo; José R. González‐Escalada; José M. Solís

Topiramate (TPM) is an antiepileptic with several proposed mechanisms of action including the inhibition of carbonic anhydrase (CA). Since the activity of this enzyme is essential for the generation of GABA(A)-mediated depolarizing responses, which appears to participate in epileptogenesis, we investigated whether TPM could inhibit such a response in rat hippocampal slices using intracellular recordings. Bath perfusion of TPM (20 and 100 microM) reversibly reduced the GABA(A)-mediated depolarizing responses evoked by either synaptic stimulation (GDPSPs) or by pressure application of GABA, but did not modify the GABA(A)-mediated hyperpolarizing postsynaptic potentials. TPM (20 microM) shifted the reversal potential for the GDPSP by -10 mV. Unexpectedly, TPM also induced a steady membrane hyperpolarization associated with a reduction in the input resistance of the cell. This effect was insensitive to tetrodotoxin, and to GABA(A) and GABA(B) receptor antagonists, but was blocked by barium (1 mM). Notably, when the extracellular concentration of K(+) was varied the reversal potential shifted as predicted by the Nernst potential for K(+). Acetazolamide (20 microM), another CA inhibitor, elicited similar effects to those reported here for TPM and occluded the hyperpolarization evoked by TPM. The results of this study support the concept that inhibition of carbonic anhydrase in neurons contributes to the anticonvulsant activity of TPM.


Brain Research | 2000

Taurine activates GABAA but not GABAB receptors in rat hippocampal CA1 area

Nuria Del Olmo; Julián Bustamante; Rafael Martín del Río; José M. Solís

We investigated if taurine, an endogenous GABA analog, could mimic both hyperpolarizing and depolarizing GABA(A)-mediated responses as well as pre- and postsynaptic GABA(B)-mediated actions in the CA1 region of rat hippocampal slices. Taurine (10 mM) perfusion induced changes in membrane potential and input resistance that are compatible with GABA(A) receptor activation. Local pressure application of taurine and GABA from a double barrel pipette positioned along the dendritic shaft of pyramidal cells revealed that taurine evoked a very small change of membrane potential and resistance compared with the large changes induced by GABA in these parameters. Moreover, in the presence of GABA(A) antagonists, local application of GABA on the dendrites evoked a GABA(B)-mediated hyperpolarization while taurine did not induce any change. Taurine neither mimicked baclofen inhibitory actions on presynaptic release of glutamate and GABA as judging by the lack of taurine effect on paired-pulse facilitation ratio and slow inhibitory postsynaptic potentials, respectively. These results show that taurine mainly activates GABA(A) receptors located on the cell body, indicating therefore that if taurine has any action on the dendrites it will not be mediated by either GABA(A) or GABA(B) receptors activation.


Neuropsychopharmacology | 2008

Augmented acquisition of cocaine self-administration and altered brain glucose metabolism in adult female but not male rats exposed to a cannabinoid agonist during adolescence.

Alejandro Higuera-Matas; María Luisa Soto-Montenegro; Nuria Del Olmo; Miguel Miguéns; Isabel Torres; Juan J. Vaquero; Javier Sánchez; Carmen García-Lecumberri; Manuel Desco; Emilio Ambrosio

Marijuana consumption during adolescence has been proposed to be a stepping-stone for adult cocaine addiction. However, experimental evidence for this hypothesis is missing. In this work we chronically injected male and female Wistar rats with either the cannabinoid agonist CP 55,940 (CP; 0.4 mg/kg) or its corresponding vehicle. Adult acquisition (seven 30 min daily sessions) and maintenance (fourteen 2 h daily sessions) of cocaine self-administration (1 mg/kg), food-reinforced operant learning under conditions of normal (ad libitum access to food), and high motivation (food-restriction schedule) were measured. Additionally, brain metabolic activity was analyzed by means of [18F]-fluorodeoxyglucose positron emission tomography. During the acquisition phase, female CP-treated rats showed a higher rate of cocaine self-administration as compared to vehicle-treated females and males; no differences were found between both male groups. This effect disappeared in the maintenance phase. Moreover, no differences among groups were evident in the food-reinforced operant task, pointing to the cocaine-specific nature of the effect seen in self-administration rather than a general change in reward processing. Basal brain metabolic activity also changed in CP-treated females when compared to their vehicle-treated counterparts with no differences being found in the males; more specifically we observed a hyper activation of the frontal cortex and a hypo activation of the amygdalo-entorhinal cortex. Our results suggest that a chronic exposure to cannabinoids during adolescence alters the susceptibility to acquire cocaine self-administration, in a sex-specific fashion. This increased susceptibility could be related to the changes in brain metabolic activity induced by cannabinoids during adolescence.


Neurobiology of Learning and Memory | 2013

Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin?

Ismael Valladolid-Acebes; Alberto Fole; Miriam Martín; Lidia Morales; M. Victoria Cano; Mariano Ruiz-Gayo; Nuria Del Olmo

Recent evidence has established that consumption of high-fat diets (HFD) is associated with deficits in hippocampus-dependent memory. Adolescence is an important period for shaping learning and memory acquisition that could be particularly sensitive to the detrimental effects of HFD. In the current study we have administered this kind of diets to both adolescent (5-week old) and young adult (8-week old) male C57BL mice during 8 weeks and we have evaluated its effect on (i) spatial memory performance in the novel location recognition (NLR) paradigm, and (ii) spine density and neural cell adhesion molecule (NCAM) expression in hippocampal CA1 pyramidal neurons. In order to characterize the eventual involvement of central leptin receptors we have also investigated the functionality of leptin receptors within the hippocampus. Here we report that animals that started to consume HFD during the adolescence were less efficient than their control counterparts in performing spatial memory tasks. In contrast to that, mice that were submitted to HFD during the young adult period displayed intact performance in the NLR test. In mice receiving HFD from the adolescence, the behavioral impairment was accompanied by an increase of dendritic spine density in CA1 pyramidal neurons that correlated with the up-regulation of neural cell adhesion molecule (NCAM) in this area. Deficits in spatial memory occurred concomitantly with a desensitization of the proteinkinase B (Akt) pathway coupled to hippocampal leptin receptors. In contrast, the STAT3 pathway remained unaffected by HFD. All effects of HFD were long-lasting because they remained intact even after 5 weeks of food restriction. Our results provide further evidence of the susceptibility of the hippocampus to HFD in adolescent individuals and suggest that leptin signaling integrity in this brain area is pivotal for memory performance.


Brain Research | 2006

Enhancement of hippocampal long-term potentiation induced by cocaine self-administration is maintained during the extinction of this behavior.

Nuria Del Olmo; Miguel Miguéns; Alejandro Higuera-Matas; Isabel Torres; Carmen García-Lecumberri; José M. Solís; Emilio Ambrosio

Drug addiction may involve learning and memory processes requiring the participation of hippocampal formation. One of the best studied examples of hippocampal synaptic plasticity is the long-term potentiation (LTP) which usually occurs when hippocampal synapses are stimulated with high-frequency stimulation. The aim of this work has been to study the effect of extinction of cocaine self-administration behavior on synaptic plasticity in rat hippocampal slices. LTP was induced using a tetanization paradigm consisting of a single train of high-frequency (100 Hz) stimulation for one second. This tetanization protocol evoked a greater and more perdurable LTP in slices obtained after 10 days of extinction of cocaine self-administration (1 mg/kg/injection) than that elicited in slices from saline self-administering (0.9% NaCl) animals. In addition, this LTP facilitation in animals which have followed the cocaine self-administration extinction protocol was very similar to that obtained in slices from cocaine self-administering animals. These results suggest that chronic cocaine self-administration induces enduring neuroadaptive changes in hippocampal synaptic plasticity which last even after the extinction of this behavior and that they may be involved in cocaine dependence.


Neuropharmacology | 2000

Taurine-induced synaptic potentiation: role of calcium and interaction with LTP.

Nuria Del Olmo; Mario Galarreta; Julián Bustamante; Rafael Martín del Río; José M. Solís

Taurine induces a long-lasting potentiation of excitatory synaptic potentials due to the enhancement of both synaptic efficacy and axon excitability in the CA1 area of rat hippocampal slices. In this study, we characterized the role of Ca2+ in the generation of these long-lasting taurine effects. Taurine perfusion in a free-Ca2+ medium did not induce changes in either field excitatory synaptic potentials (fEPSP) slope or fiber volley (FV) amplitude. Intracellular recordings with a micropipette filled with the Ca2+ chelator BAPTA, prevented the EPSP potentiation induced by taurine in the impaled cell, whereas a long-lasting potentiation of the simultaneously recorded fEPSP was obtained. The depletion of intracellular Ca2+ stores by thapsigargin (1 microM), an inhibitor of endosomal Ca2+-ATPase, transformed the taurine-induced potentiation into a transitory process that declined to basal values after taurine withdrawal. Taurine-induced potentiation was not significantly affected by kynurenate (glutamate receptor antagonist), or nifedipine (high-voltage-activated Ca2+ channel antagonist). But, the presence of nickel (50 microM), an antagonist of low-voltage-activated Ca2+ channel, inhibited the taurine-induced potentiation, indicating that Ca2+ influx through this type of Ca2+ channels could account for the Ca2+ requirement of the taurine-induced potentiation. Occlusion experiments between tetanus-induced long-term potentiation (LTP) and taurine-induced potentiation indicate that both processes share some common mechanisms during the maintenance period.


Neuropharmacology | 2007

Modulation of the endogenous opioid system after morphine self-administration and during its extinction: a study in Lewis and Fischer 344 rats.

Pilar Sánchez-Cardoso; Alejandro Higuera-Matas; Sonsoles Martı́n; Nuria Del Olmo; Miguel Miguéns; Carmen García-Lecumberri; Emilio Ambrosio

Lewis (LEW) and Fischer 344 (F344) rats show differential morphine self-administration rates. In this study, after animals of both strains self-administered morphine (1mg/kg) or extinguished this behaviour for 3, 7 or 15days, we measured the binding to, and functional state of mu opioid receptors (MORs) as well as proenkephalin (PENK) mRNA content in several brain regions. The results showed that in most brain areas: 1) LEW rats had less binding to MORs in basal conditions than F344 rats; 2) after morphine self-administration, either one of the strains or both (depending on the brain area) showed increased levels of binding to MORs as compared to basal groups; and 3) these binding levels in morphine self-administration animals came down in each extinction group. Moreover, F344 rats exhibited, in general, an increased functionality of MORs after morphine self-administration, as compared to basal groups, which also went down during extinction. Finally, the basal content of PENK mRNA was lower in LEW rats than in F344 rats and it decreased more after self-administration; during extinction, the levels of PENK mRNA got normalized in this strain. This differential modulation of the endogenous opioid system might be related to the different rates of morphine self-administration behavior exhibited by both inbred rat strains.


Neuropharmacology | 2008

Differential cocaine-induced modulation of glutamate and dopamine transporters after contingent and non-contingent administration

Miguel Miguéns; José Antonio Crespo; Nuria Del Olmo; Alejandro Higuera-Matas; Gonzalo L. Montoya; Carmen García-Lecumberri; Emilio Ambrosio

Although dopamine and glutamate transmission has been implicated in cocaine dependence, the effects of the extinction of cocaine self-administration on protein transporters in both of these neurotransmitter systems remain unknown. We have used a yoked-box procedure to simultaneously test rats in triads, one rat that actively self-administered cocaine (CONT), while the other two received yoked injections of either cocaine (NON-CONT) or saline (SALINE). The brains in each triad were removed and processed for quantitative autoradiography immediately after the last session of cocaine self-administration (Day 0), or after 1, 5, or 10 days of extinction, and excitatory amino acid transporters (EAATs) and dopamine transporter (DAT) binding was examined. When compared to NON-CONT and SALINE animals, binding of radioligand to EAATs was significantly lower in the hippocampal CA1 field and the cerebellar cortex of CONT rats on Day 0, although it was significantly higher after 1 day of extinction in the infralimbic cortex. No differences in EAAT binding were observed after 5 or 10 days of extinction in any of the brain regions analyzed. In contrast and at all the time points of extinction, binding to DAT was significantly enhanced in CONT animals when compared to SALINE and NON-CONT rats in different forebrain and mesencephalic regions, including the nucleus accumbens, ventral tegmental area or caudate putamen. These results suggest that changes in protein transporter binding after cocaine self-administration and extinction are transient for EAAT while they are more enduring for DAT, and that they depend on the type of access to cocaine.


PLOS ONE | 2012

Shift of Circadian Feeding Pattern by High-Fat Diets Is Coincident with Reward Deficits in Obese Mice

Lidia Morales; Nuria Del Olmo; Ismael Valladolid-Acebes; Alberto Fole; Victoria Cano; Beatriz Merino; Paula Stucchi; Daniela Ruggieri; Laura López; Luis F. Alguacil; Mariano Ruiz-Gayo

Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern has been shown to be a cause of HF-induced overweight and obesity. Our hypothesis deals with the eventual link between the rewarding properties of food and the circadian distribution of meals. We have investigated the effect of circadian feeding pattern on reward circuits by means of the conditioned-place preference (CPP) paradigm and we have characterized the rewarding properties of natural (food) and artificial (cocaine) reinforcers both in free-feeding ad libitum HF mice and in HF animals submitted to a re-organized feeding schedule based on the standard feeding behavior displayed by mice feeding normal chow (“forced synchronization”). We demonstrate that i) ad libitum HF diet attenuates cocaine and food reward in the CPP protocol, and ii) forced synchronization of feeding prevents this reward deficit. Our study provides further evidence that the rewarding impact of food with low palatability is diminished in mice exposed to a high-fat diet and strongly suggest that the decreased sensitivity to chow as a positive reinforcer triggers a disorganized feeding pattern which might account for metabolic disorders leading to obesity.


Neuropharmacology | 2012

Sex-specific disturbances of the glutamate/GABA balance in the hippocampus of adult rats subjected to adolescent cannabinoid exposure

Alejandro Higuera-Matas; Miguel Miguéns; Santiago M. Coria; María Amparo Assis; Erika Borcel; Nuria Del Olmo; Emilio Ambrosio

Adolescence is a period of active synaptic remodelling and plasticity and as such, a developmental phase of particular vulnerability to the effects of environmental insults. The endogenous cannabinoid system regulates central nervous system development and cannabinoid exposure during adolescence has been linked to several alterations to hippocampal-dependent processes such as cognition and emotion, which rely on intact glutamatergic and GABAergic systems. Here we show that K(+)-induced γ-amino butyric acid (GABA) release increases in the CA1 hippocampal field of Wistar rats of both sexes that were treated chronically with the cannabinoid agonist CP 55,940 (CP55940) during adolescence. GABA(B) receptors levels also increased in cannabinoid-exposed rats. In addition, CP55940-treated females exhibit reduced GABA transporter gene expression (GAT-1), increased GABA(A) receptor expression, as well as decreased K(+)-induced glutamate release and NMDA receptor levels. CP55940 administration did not affect the glial (EAAT2) or neuronal (EAAT3) glutamate transporter gene expression in either males or females, and nor were any changes in the mGlu5 receptor protein levels observed. Taken together, these results show that while the exacerbated GABA release induced by early cannabinoid exposure may be compensated by an increment in GABA(B) receptors, which normally function as inhibitory autoreceptors, adolescent cannabinoid exposure in the females disturbs the normal balance between glutamate and GABA transmission. These observations may provide important insight into the neuronal basis of the well-documented alterations in cognitive and emotional processes induced by adolescent cannabinoid exposure.

Collaboration


Dive into the Nuria Del Olmo's collaboration.

Top Co-Authors

Avatar

Emilio Ambrosio

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Miguel Miguéns

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Alejandro Higuera-Matas

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Carmen García-Lecumberri

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Mariano Ruiz-Gayo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Julián Bustamante

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alberto Fole

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Gonzalo L. Montoya

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge