Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Galbusera is active.

Publication


Featured researches published by Alberto Galbusera.


NeuroImage | 2014

Distributed BOLD and CBV-weighted resting-state networks in the mouse brain

Francesco Sforazzini; Adam J. Schwarz; Alberto Galbusera; Angelo Bifone; Alessandro Gozzi

Laboratory mouse models represent a powerful tool to elucidate the biological foundations of disease, but translation to and from human studies rely upon valid cross-species measures. Resting-state functional connectivity (rsFC) represents a promising translational probe of brain function; however, no convincing demonstration of the presence of distributed, bilateral rsFC networks in the mouse brain has yet been reported. Here we used blood oxygen level dependent (BOLD) and cerebral blood volume (CBV) weighted fMRI to demonstrate the presence of robust and reproducible resting-state networks in the mouse brain. Independent-component analysis (ICA) revealed inter-hemispheric homotopic rsFC networks encompassing several established neuro-anatomical systems of the mouse brain, including limbic, motor and parietal cortex, striatum, thalamus and hippocampus. BOLD and CBV contrast produced consistent networks, with the latter exhibiting a superior anatomical preservation of brain regions close to air-tissue interfaces (e.g. ventral hippocampus). Seed-based analysis confirmed the inter-hemispheric specificity of the correlations observed with ICA and highlighted the presence of distributed antero-posterior networks anatomically homologous to the human salience network (SN) and default-mode network (DMN). Consistent with rsFC investigations in humans, BOLD and CBV-weighted fMRI signals in the DMN-like network exhibited spontaneous anti-correlation with neighbouring fronto-parietal areas. These findings demonstrate the presence of robust distributed intrinsic functional connectivity networks in the mouse brain, and pave the way for the application of rsFC readouts in transgenic models to investigate the biological underpinnings of spontaneous BOLD fMRI fluctuations and their derangement in pathological states.


PLOS ONE | 2013

Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

Luca Dodero; Mario Damiano; Alberto Galbusera; Angelo Bifone; Sotirios A. Tsaftsaris; Maria Luisa Scattoni; Alessandro Gozzi

BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations.


NeuroImage | 2015

Functional connectivity hubs of the mouse brain.

Adam Liska; Alberto Galbusera; Adam J. Schwarz; Alessandro Gozzi

Recent advances in functional connectivity methods have made it possible to identify brain hubs - a set of highly connected regions serving as integrators of distributed neuronal activity. The integrative role of hub nodes makes these areas points of high vulnerability to dysfunction in brain disorders, and abnormal hub connectivity profiles have been described for several neuropsychiatric disorders. The identification of analogous functional connectivity hubs in preclinical species like the mouse may provide critical insight into the elusive biological underpinnings of these connectional alterations. To spatially locate functional connectivity hubs in the mouse brain, here we applied a fully-weighted network analysis to map whole-brain intrinsic functional connectivity (i.e., the functional connectome) at a high-resolution voxel-scale. Analysis of a large resting-state functional magnetic resonance imaging (rsfMRI) dataset revealed the presence of six distinct functional modules related to known large-scale functional partitions of the brain, including a default-mode network (DMN). Consistent with human studies, highly-connected functional hubs were identified in several sub-regions of the DMN, including the anterior and posterior cingulate and prefrontal cortices, in the thalamus, and in small foci within well-known integrative cortical structures such as the insular and temporal association cortices. According to their integrative role, the identified hubs exhibited mutual preferential interconnections. These findings highlight the presence of evolutionarily-conserved, mutually-interconnected functional hubs in the mouse brain, and may guide future investigations of the biological foundations of aberrant rsfMRI hub connectivity associated with brain pathological states.


Brain Structure & Function | 2016

Altered functional connectivity networks in acallosal and socially impaired BTBR mice

Francesco Sforazzini; Alice Bertero; Luca Dodero; Gergely David; Alberto Galbusera; Maria Luisa Scattoni; Massimo Pasqualetti; Alessandro Gozzi

Abstract Agenesis of the corpus callosum (AgCC) is a congenital condition associated with wide-ranging emotional and social impairments often overlapping with the diagnostic criteria for autism. Mapping functional connectivity in the acallosal brain can help identify neural correlates of the deficits associated with this condition, and elucidate how congenital white matter alterations shape the topology of large-scale functional networks. By using resting-state BOLD functional magnetic resonance imaging (rsfMRI), here we show that acallosal BTBR T+tpr3tf/J (BTBR) mice, an idiopathic model of autism, exhibit impaired intra-hemispheric connectivity in fronto-cortical, but not in posterior sensory cortical areas. We also document profoundly altered subcortical and intra-hemispheric connectivity networks, with evidence of marked fronto-thalamic and striatal disconnectivity, along with aberrant spatial extension and strength of ipsilateral and local connectivity. Importantly, inter-hemispheric tracing of monosynaptic connections in the primary visual cortex using recombinant rabies virus confirmed the absence of direct homotopic pathways between posterior cortical areas of BTBR mice, suggesting a polysynaptic origin for the synchronous rsfMRI signal observed in these regions. Collectively, the observed long-range connectivity impairments recapitulate hallmark neuroimaging findings in autism, and are consistent with the behavioral phenotype of BTBR mice. In contrast to recent rsfMRI studies in high functioning AgCC individuals, the profound fronto-cortical and subcortical disconnectivity mapped suggest that compensatory mechanism may not necessarily restore the full connectional topology of the brain, resulting in residual connectivity alterations that serve as plausible substrates for the cognitive and emotional deficits often associated with AgCC.


Cerebral Cortex | 2015

COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans

Sara Sannino; Alessandro Gozzi; Antonio Cerasa; Fabrizio Piras; Diego Scheggia; Francesca Managò; Mario Damiano; Alberto Galbusera; Lucy Erickson; Davide De Pietri Tonelli; Angelo Bifone; Sotirios A. Tsaftaris; Carlo Caltagirone; Daniel R. Weinberger; Gianfranco Spalletta; Francesco Papaleo

Genetic variations in catechol-O-methyltransferase (COMT) that modulate cortical dopamine have been associated with pleiotropic behavioral effects in humans and mice. Recent data suggest that some of these effects may vary among sexes. However, the specific brain substrates underlying COMT sexual dimorphisms remain unknown. Here, we report that genetically driven reduction in COMT enzyme activity increased cortical thickness in the prefrontal cortex (PFC) and postero-parieto-temporal cortex of male, but not female adult mice and humans. Dichotomous changes in PFC cytoarchitecture were also observed: reduced COMT increased a measure of neuronal density in males, while reducing it in female mice. Consistent with the neuroanatomical findings, COMT-dependent sex-specific morphological brain changes were paralleled by divergent effects on PFC-dependent working memory in both mice and humans. These findings emphasize a specific sex-gene interaction that can modulate brain morphological substrates with influence on behavioral outcomes in healthy subjects and, potentially, in neuropsychiatric populations.


Translational Psychiatry | 2014

Dysfunctional dopaminergic neurotransmission in asocial BTBR mice

Marta Squillace; Luca Dodero; Mauro Federici; Sara Migliarini; Francesco d’Errico; Francesco Napolitano; Paraskevi Krashia; A. Di Maio; Alberto Galbusera; Angelo Bifone; Maria Luisa Scattoni; Massimo Pasqualetti; Nicola B. Mercuri; Alessandro Usiello; Alessandro Gozzi

Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T+ Itpr3tf/J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations.


Translational Psychiatry | 2015

A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice

Francesco d’Errico; Valeria D'Argenio; Francesco Sforazzini; Felice Iasevoli; Marta Squillace; G. Guerri; Francesco Napolitano; Tiziana Angrisano; A. Di Maio; Simona Keller; Daniela Vitucci; Alberto Galbusera; Lorenzo Chiariotti; Alessandro Bertolino; A. de Bartolomeis; F. Salvatore; Alessandro Gozzi; Alessandro Usiello

Increasing evidence points to a role for dysfunctional glutamate N-methyl-D-aspartate receptor (NMDAR) neurotransmission in schizophrenia. D-aspartate is an atypical amino acid that activates NMDARs through binding to the glutamate site on GluN2 subunits. D-aspartate is present in high amounts in the embryonic brain of mammals and rapidly decreases after birth, due to the activity of the enzyme D-aspartate oxidase (DDO). The agonistic activity exerted by D-aspartate on NMDARs and its neurodevelopmental occurrence make this D-amino acid a potential mediator for some of the NMDAR-related alterations observed in schizophrenia. Consistently, substantial reductions of D-aspartate and NMDA were recently observed in the postmortem prefrontal cortex of schizophrenic patients. Here we show that DDO mRNA expression is increased in prefrontal samples of schizophrenic patients, thus suggesting a plausible molecular event responsible for the D-aspartate imbalance previously described. To investigate whether altered D-aspartate levels can modulate schizophrenia-relevant circuits and behaviors, we also measured the psychotomimetic effects produced by the NMDAR antagonist, phencyclidine, in Ddo knockout mice (Ddo−/−), an animal model characterized by tonically increased D-aspartate levels since perinatal life. We show that Ddo−/− mice display a significant reduction in motor hyperactivity and prepulse inhibition deficit induced by phencyclidine, compared with controls. Furthermore, we reveal that increased levels of D-aspartate in Ddo−/− animals can significantly inhibit functional circuits activated by phencyclidine, and affect the development of cortico–hippocampal connectivity networks potentially involved in schizophrenia. Collectively, the present results suggest that altered D-aspartate levels can influence neurodevelopmental brain processes relevant to schizophrenia.


Translational Psychiatry | 2014

Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

Francesco d’Errico; Robert Nisticò; A. Di Giorgio; Marta Squillace; Daniela Vitucci; Alberto Galbusera; Sonia Piccinin; Dalila Mango; Leonardo Fazio; Silvia Middei; Silvestro Trizio; Nicola B. Mercuri; M A Teule; Diego Centonze; Alessandro Gozzi; Giuseppe Blasi; Alessandro Bertolino; Alessandro Usiello

D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans.


Frontiers in Aging Neuroscience | 2016

Effects of Omega-3 Fatty Acid Supplementation on Cognitive Functions and Neural Substrates: A Voxel-Based Morphometry Study in Aged Mice

Debora Cutuli; Marco Pagani; Paola Caporali; Alberto Galbusera; Daniela Laricchiuta; Francesca Foti; Cristina Neri; Gianfranco Spalletta; Carlo Caltagirone; Laura Petrosini; Alessandro Gozzi

Human and experimental studies have revealed putative neuroprotective and pro-cognitive effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in aging, evidencing positive correlations between peripheral n-3 PUFA levels and regional grey matter (GM) volume, as well as negative correlations between dietary n-3 PUFA levels and cognitive deficits. We recently showed that n-3 PUFA supplemented aged mice exhibit better hippocampal-dependent mnesic functions, along with enhanced cellular plasticity and reduced neurodegeneration, thus supporting a role of n-3 PUFA supplementation in preventing cognitive decline during aging. To corroborate these initial results and develop new evidence on the effects of n-3 PUFA supplementation on brain substrates at macro-scale level, here we expanded behavioral analyses to the emotional domain (anxiety and coping skills), and carried out a fine-grained regional GM volumetric mapping by using high-resolution MRI-based voxel-based morphometry. The behavioral effects of 8 week n-3 PUFA supplementation were measured on cognitive (discriminative, spatial and social) and emotional (anxiety and coping) abilities of aged (19 month-old at the onset of study) C57B6/J mice. n-3 PUFA supplemented mice showed better mnesic performances as well as increased active coping skills. Importantly, these effects were associated with enlarged regional hippocampal, retrosplenial and prefrontal GM volumes, and with increased post mortem n-3 PUFA brain levels. These findings indicate that increased dietary n-3 PUFA intake in normal aging can improve fronto-hippocampal GM structure and function, an effect present also when the supplementation starts at late age. Our data are consistent with a protective role of n-3 PUFA supplementation in counteracting cognitive decline, emotional dysfunctions and brain atrophy.


Journal of Neuroscience Methods | 2016

Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain.

Marco Pagani; Mario Damiano; Alberto Galbusera; Sotirios A. Tsaftaris; Alessandro Gozzi

BACKGROUND Morphoanatomical MRI methods have recently begun to be applied in the mouse. However, substantial differences in the anatomical organisation of human and rodent brain prevent a straightforward extension of clinical neuroimaging tools to mouse brain imaging. As a result, the vast majority of the published approaches rely on tailored routines that address single morphoanatomical readouts and typically lack a sufficiently-detailed description of the complex workflow required to process images and quantify structural alterations. NEW METHOD Here we provide a detailed description of semi-automated registration-based procedures for voxel based morphometry, cortical thickness estimation and automated anatomical labelling of the mouse brain. The approach relies on the sequential use of advanced image processing tools offered by ANTs, a flexible open source toolkit freely available to the scientific community. RESULTS To illustrate our procedures, we described their application to quantify morphological alterations in socially-impaired BTBR mice with respect to normosocial C57BL/6J controls, a comparison recently described by us and other research groups. We show that the approach can reliably detect both focal and large-scale grey matter alterations using complementary readouts. COMPARISON WITH EXISTING METHODS No detailed operational workflows for mouse imaging are available for direct comparison with our methods. However, empirical assessment of the mapped inter-strain differences is in good agreement with the findings of other groups using analogous approaches. CONCLUSION The detailed operational workflows described here are expected to help the implementation of rodent morphoanatomical methods by non-expert users, and ultimately promote the use of these tools across the preclinical neuroimaging community.

Collaboration


Dive into the Alberto Galbusera's collaboration.

Top Co-Authors

Avatar

Alessandro Gozzi

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Maria Luisa Scattoni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Pagani

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Adam Liska

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Alessandro Usiello

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Alice Bertero

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Angela Caruso

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Angelo Bifone

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Caterina Michetti

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge