Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Pasqualetti is active.

Publication


Featured researches published by Massimo Pasqualetti.


American Journal of Human Genetics | 2006

Increased Sensitivity of the Neuronal Nicotinic Receptor α2 Subunit Causes Familial Epilepsy with Nocturnal Wandering and Ictal Fear

Paolo Aridon; Carla Marini; Chiara Di Resta; Elisa Brilli; Maurizio De Fusco; Fausta Politi; Elena Parrini; Irene Manfredi; Tiziana Pisano; Dario Pruna; Giulia Curia; Carlo Cianchetti; Massimo Pasqualetti; Andrea Becchetti; Renzo Guerrini; Giorgio Casari

Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the alpha 4 and beta 2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular genetic study of a large pedigree segregating sleep-related epilepsy in which seizures are associated with fear sensation, tongue movements, and nocturnal wandering, closely resembling nightmares and sleep walking. We identified a new genetic locus for familial sleep-related focal epilepsy on chromosome 8p12.3-8q12.3. By sequencing the positional candidate neuronal cholinergic receptor alpha 2 subunit gene (CHRNA2), we detected a heterozygous missense mutation, I279N, in the first transmembrane domain that is crucial for receptor function. Whole-cell recordings of transiently transfected HEK293 cells expressing either the mutant or the wild-type receptor showed that the new CHRNA2 mutation markedly increases the receptor sensitivity to acetylcholine, therefore indicating that the nicotinic alpha 2 subunit alteration is the underlying cause. CHRNA2 is the third neuronal cholinergic receptor gene to be associated with familial sleep-related epilepsies. Compared with the CHRNA4 and CHRNB2 mutations reported elsewhere, CHRNA2 mutations cause a more complex and finalized ictal behavior.


Neuroscience | 1999

Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain

Massimo Pasqualetti; Michela Ori; Maura Castagna; Donatella Marazziti; Giovanni B. Cassano; Irma Nardi

The regional and cellular distribution of serotonin type 2C receptor messenger RNA was investigated in autopsy samples of human brain by in situ hybridization histochemistry. The main sites of serotonin receptor type 2C messenger RNA expression were the choroid plexus, cerebral cortex, hippocampus, amygdala, some components of the basal ganglia, the substantia nigra, the substantia innominata and the ventromedial hypothalamus, suggesting that this receptor might be involved in the regulation of different brain functions. Interestingly, in all regions examined, the serotonin type 2C receptor messenger RNA was always restricted to subpopulations of cells, suggesting a specific role, perhaps determined by regionality. A comparison of the in situ hybridization results with those previously obtained by means of radioligand binding experiments suggested that in most of the areas analysed the serotonin type 2C receptors were located at axon terminals.


Science | 2006

Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map

Franck Oury; Yasunori Murakami; Jean-Sébastien Renaud; Massimo Pasqualetti; Patrick Charnay; Shu-Yue Ren; Filippo M. Rijli

In the mouse trigeminal pathway, sensory inputs from distinct facial structures, such as whiskers or lower jaw and lip, are topographically mapped onto the somatosensory cortex through relay stations in the thalamus and hindbrain. In the developing hindbrain, the mechanisms generating such maps remain elusive. We found that in the principal sensory nucleus, the whisker-related map is contributed by rhombomere 3–derived neurons, whereas the rhombomere 2–derived progeny supply the lower jaw and lip representation. Moreover, early Hoxa2 expression in neuroepithelium prevents the trigeminal nerve from ectopically projecting to the cerebellum, whereas late expression in the principal sensory nucleus promotes selective arborization of whisker-related afferents and topographic connectivity to the thalamus. Hoxa2 inactivation further results in the absence of whisker-related maps in the postnatal brain. Thus, Hoxa2- and rhombomere 3–dependent cues determine the whisker area map and are required for the assembly of the whisker-to-barrel somatosensory circuit.


PLOS Biology | 2008

Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling.

Marc J Geisen; Thomas Di Meglio; Massimo Pasqualetti; Sebastien Ducret; Jean-François Brunet; Alain Chédotal; Filippo M. Rijli

The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain.


Nature | 2004

Evolutionary biology: Lamprey Hox genes and the evolution of jaws

Yoko Takio; Massimo Pasqualetti; Shigehiro Kuraku; Shigeki Hirano; Filippo M. Rijli; Shigeru Kuratani

Arising from: M. J. Cohn 416, 386–387 (2002).In vertebrates with jaws (gnathostomes), the jaws are formed from the first pharyngeal arch (PA1), which does not express homeobox (Hox) genes. Cohn describes expression of the HoxL6 gene in the PA1 of the lamprey Lampetra fluviatilis, a jawless (agnathan) vertebrate, and postulates that a retreat of Hox expression from PA1 might have favoured the evolution of jaws in the gnathostome lineage after the split from agnathans. Here we examine the distribution of Hox genes in another lamprey species, Lethenteron japonicum, and find that none are expressed in the PA1. We conclude that Cohns finding is not a general feature within the lamprey group and is therefore unlikely to be related to jawlessness.


Molecular Psychiatry | 2013

Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation

Sara Migliarini; Giulia Pacini; Barbara Pelosi; G. Lunardi; Massimo Pasqualetti

Despite increasing evidence suggests that serotonin (5-HT) can influence neurogenesis, neuronal migration and circuitry formation, the precise role of 5-HT on central nervous system (CNS) development is only beginning to be elucidated. Moreover, how changes in serotonin homeostasis during critical developmental periods may have etiological relevance to human mental disorders, remains an unsolved question. In this study we address the consequences of 5-HT synthesis abrogation on CNS development using a knock-in mouse line in which the tryptophan hydroxylase 2 (Tph2) gene is replaced by the eGFP reporter. We report that lack of brain 5-HT results in a dramatic reduction of body growth rate and in 60% lethality within the first 3 weeks after birth, with no gross anatomical changes in the brain. Thanks to the specific expression of the eGFP, we could highlight the serotonergic system independently of 5-HT immunoreactivity. We found that lack of central serotonin produces severe abnormalities in the serotonergic circuitry formation with a brain region- and time- specific effect. Indeed, we observed a striking reduction of serotonergic innervation to the suprachiasmatic and thalamic paraventricular nuclei, while a marked serotonergic hyperinnervation was found in the nucleus accumbens and hippocampus of Tph2∷eGFP mutants. Finally, we demonstrated that BDNF expression is significantly up-regulated in the hippocampus of mice lacking brain 5-HT, mirroring the timing of the appearance of hyperinnervation and thus unmasking a possible regulatory feedback mechanism tuning the serotonergic neuronal circuitry formation. On the whole, these findings reveal that alterations of serotonin levels during CNS development affect the proper wiring of the brain that may produce long-lasting changes leading to neurodevelopmental disorders.


Development | 2004

Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain

Yasunori Murakami; Massimo Pasqualetti; Yoko Takio; Shigeki Hirano; Filippo M. Rijli; Shigeru Kuratani

During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus (Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic, bulbar and Mauthner cells, develop in conserved rhombomere-specific positions, similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore, whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.


Molecular Brain Research | 1998

Distribution of the 5-HT5A serotonin receptor mRNA in the human brain

Massimo Pasqualetti; Michela Ori; Irma Nardi; Maura Castagna; Giovanni Batista Cassano; Donatella Marazziti

The 5-HT5A receptor is a member of a new subfamily of serotonin [5-hydroxytryptamine (5-HT)] receptors recently cloned from the human and rodent brain. The role of this receptor in normal brain functions as well as its possible involvement in pathological states is still to be determined. We therefore studied the regional distribution and cellular localization of 5-HT5A receptor mRNA in human brain sections from autopsy samples by in situ hybridization histochemistry, in order to obtain anatomical information which might be useful in formulating hypotheses on possible functions subserved by this receptor in the central nervous system (CNS). Our results showed that the main sites of 5-HT5A mRNA expression were the cerebral cortex, hippocampus and cerebellum. In the neocortical regions, the 5-HT5A receptor mRNA was mainly distributed in the layers II-III and V-VI. In the hippocampus, the dentate gyrus and the pyramidal cell layer of the CA1 and CA3 fields expressed 5-HT5A mRNA at high levels. The broad distribution in the neocortex and hippocampus supports the view that the 5-HT5A receptor in these areas might be implicated in high cortical and limbic functions. The 5-HT5A mRNA was widely distributed in the cerebellum where it was highly expressed in the Purkinje cells, in the dentate nucleus and, at a lower level, in the granule cells. Since the cerebellum receives diffuse serotonergic afferents, this finding suggests that the 5-HT5A receptor may have an important role in mediating the effects of 5-HT on cerebellar functions.


Neurobiology of Disease | 2010

Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia.

Francesco Napolitano; Massimo Pasqualetti; Alessandro Usiello; Emanuela Santini; Giulia Pacini; Giuseppe Sciamanna; Francesco d’Errico; Annalisa Tassone; Valeria Di Dato; Giuseppina Martella; Dario Cuomo; Gilberto Fisone; Giorgio Bernardi; Georgia Mandolesi; Nicola B. Mercuri; David G. Standaert; Antonio Pisani

DYT1 dystonia is an inherited disease linked to mutation in the TOR1A gene encoding for the protein torsinA. Although the mechanism by which this genetic alteration leads to dystonia is unclear, multiple lines of clinical evidence suggest a link between dystonia and a reduced dopamine D2 receptor (D2R) availability. Based on this evidence, herein we carried out a comprehensive analysis of electrophysiological, behavioral and signaling correlates of D2R transmission in transgenic mice with the DYT1 dystonia mutation. Electrophysiological recordings from nigral dopaminergic neurons showed a normal responsiveness to D2-autoreceptor function. Conversely, postsynaptic D2R function in hMT mice was impaired, as suggested by the inability of a D2R agonist to re-establish normal corticostriatal synaptic plasticity and supported by the reduced sensitivity to haloperidol-induced catalepsy. Although an in situ hybridization analysis showed normal D1R and D2R mRNA expression levels in the striata of hMT mice, we found a significant decrease of D2R protein, coupled to a reduced ability of D2Rs to activate their cognate Go/i proteins. Of relevance, we found that pharmacological blockade of adenosine A2A receptors (A2ARs) fully restored the impairment of synaptic plasticity observed in hMT mice. Together, our findings demonstrate an important link between torsinA mutation and D2R dysfunction and suggest that A2AR antagonism is able to counteract the deficit in D2R-mediated transmission observed in mutant mice, opening new perspectives for the treatment of this movement disorder.


Molecular and Cellular Neuroscience | 2008

The GTP-binding protein Rhes modulates dopamine signalling in striatal medium spiny neurons

Francesco d’Errico; Emanuela Santini; Sara Migliarini; Anders Borgkvist; Diego Centonze; Valentina Nasti; Manolo Carta; Valentina De Chiara; Chiara Prosperetti; Daniela Spano; Denis Hervé; Massimo Pasqualetti; Roberto Di Lauro; Gilberto Fisone; Alessandro Usiello

Rhes is a small GTP-binding protein prominently localized in the striatum. Previous findings obtained in cell culture systems demonstrated an involvement of Rhes in cAMP/PKA signalling pathway, at a level proximal to the activation of heterotrimeric G-protein complex. However, its role in the striatum has been, so far, only supposed. Here we studied the involvement of Rhes in dopaminergic signalling, by employing mice with a null mutation in the Rhes gene. We demonstrated that the absence of Rhes modulates cAMP/PKA signalling in both striatopallidal and striatonigral projection neurons by increasing Golf protein levels and, in turn, influencing motor responses challenged by dopaminergic agonist/antagonist. Interestingly, we also show that Rhes is required for a correct dopamine-mediated GTP binding, a function mainly associated to stimulation of dopamine D2 receptors. Altogether, our results indicate that Rhes is an important modulator of dopaminergic transmission in the striatum.

Collaboration


Dive into the Massimo Pasqualetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Usiello

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Gozzi

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Francesco Napolitano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alberto Galbusera

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Alice Bertero

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge