Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Katsumiti is active.

Publication


Featured researches published by Alberto Katsumiti.


Aquatic Toxicology | 2014

Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis.

Alberto Katsumiti; D. Gilliland; Inmaculada Arostegui; Miren P. Cajaraville

CdS quantum dots (QDs) show a great promise for treatment and diagnosis of cancer and for targeted drug delivery, due to their size-tunable fluorescence and ease of functionalization for tissue targeting. In spite of their advantages it is important to determine if CdS QDs can exert toxicity on biological systems. In the present work, cytotoxicity of CdS QDs (5 nm) at a wide range of concentrations (0.001-100 mg Cd/L) was screened using neutral red (NR) and thiazolyl blue tetrazolium bromide (MTT) assays in isolated hemocytes and gill cells of mussels (Mytilus galloprovincialis). The mechanisms of action of CdS QDs were assessed at sublethal concentrations (0.31-5 mg Cd/L) in the same cell types through a series of functional in vitro assays: production of reactive oxygen species (ROS), catalase (CAT) activity, DNA damage, lysosomal acid phosphatase (AcP) activity, multixenobiotic resistance (MXR) transport activity, Na-K-ATPase activity (only in gill cells) and phagocytic activity and damage to actin cytoskeleton (only in hemocytes). Exposures to CdS QDs lasted for 24h and were performed in parallel with exposures to bulk CdS and ionic Cd. Ionic Cd was the most toxic form to both cell types, followed by CdS QDs and bulk CdS. ROS production, DNA damage, AcP activity and MXR transport were significantly increased in both cell types exposed to the 3 forms of Cd. CAT activity increased in hemocytes exposed to the three forms of Cd while in gill cells only in those exposed to ionic Cd. No effects were found on hemocytes cytoskeleton integrity. Effects on phagocytosis were found in hemocytes exposed to bulk CdS and to CdS QDs at concentrations equal or higher than 1.25 mg Cd/L but not in those exposed to ionic Cd, indicating a particle-specific effect on phagocytosis. In conclusion, cell-mediated immunity and gill cell function represent significant targets for CdS QDs toxicity.


PLOS ONE | 2015

Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells.

Alberto Katsumiti; Douglas Gilliland; Inmaculada Arostegui; Miren P. Cajaraville

Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.


Nanotoxicology | 2015

Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive

Alberto Katsumiti; Deborah Berhanu; Kieren T. Howard; Inmaculada Arostegui; Miriam Oron; Paul Reip; Eugenia Valsami-Jones; Miren P. Cajaraville

Abstract Increasing the production and applications of TiO2 nanoparticles (NPs) has led to grow concerns about the consequences for the environment. In this study, we investigated the effects of a set of TiO2 NPs on the viability of mussel hemocytes and gill cells using neutral red and thiazolyl tetrazolium bromide assays. For this, we compared the cytotoxicity of TiO2 NPs (0.1–100 mg Ti/L) produced by different techniques: rutile NPs (60 nm) produced by milling and containing disodium laureth sulfosuccinate (DSLS), rutile NPs (10, 40 and 60 nm) produced by wet chemistry and anatase/rutile NPs (∼100 nm) produced by plasma synthesis. The commercially available P25 anatase/rutile NPs (10–20 nm) were also tested. Exposures were performed in parallel with their respective bulk forms and the cytotoxicity of the additive DSLS was also tested. Z potential values in distilled water indicated different stabilities depending on the NP type and all NPs tested formed agglomerates/aggregates in cell culture media. In general, TiO2 NPs showed a relatively low and dose-dependent toxicity for both cell models with the two assays tested. NPs produced by milling showed the highest effects, probably due to the toxicity of DSLS. Size-dependent toxicity was found for NPs produced by wet chemistry (10 nm > 40 nm and 60 nm). All TiO2 NPs tested were more toxic than bulk forms excepting for plasma produced ones, which were the least toxic TiO2 tested. The mixture bulk anatase/rutile TiO2 was more toxic than bulk rutile TiO2. In conclusion, the toxicity of TiO2 NPs varied with the mode of synthesis, crystalline structure and size of NPs and can also be influenced by the presence of additives in the suspensions.


Nanotoxicology | 2015

Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: Relevance of size, shape and additives

Alberto Katsumiti; Inmaculada Arostegui; Miriam Oron; Douglas Gilliland; Eugenia Valsami-Jones; Miren P. Cajaraville

Abstract Metal-bearing nanoparticles (NPs) possess unique physico-chemical characteristics that make them useful for an increasing number of industrial products and applications, but could also confer them a higher toxicity due to their higher reactivity compared to bulk forms of the same materials. There is a considerable interest in the use of in vitro techniques in environmentally relevant species, such as marine mussels, to evaluate NPs toxicity. In the present work, mussel hemocytes and gill cells were used to assess the potential toxic effects of Au, ZnO and SiO2 NPs with different sizes and shapes in parallel with their respective ionic and bulk forms and additives used in the NPs preparations. Cytotoxicity (neutral red and MTT assays) was screened at a wide range of concentrations, and LC50 values were calculated. Uptake of fluorescently labeled SIO2 NPs of 27 nm by hemocytes was also investigated. Au, ZnO and SiO2 NPs were less toxic than the corresponding ionic forms but more toxic than the bulk forms. ZnO NPs were the most toxic NPs tested which could be related with their capacity to release free ions. SiO2 NPs were not taken up by hemocytes and were not toxic to either hemocytes or gill cells. Size-dependent toxicity was found for Au NPs. Shape influenced the cytotoxicity of ZnO NPs. Finally, the presence of the additives Na-citrate and Ecodis P90 contributed to the toxicity of Au and ZnO NPs, respectively. As a general conclusion, solubility appears to play a key role in NPs toxicity to mussel cells.


Aquatic Toxicology | 2017

Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro

Alberto Katsumiti; Radmila Tomovska; Miren P. Cajaraville

Recently, graphene materials have attracted tremendous research interest due to their unique physicochemical properties that hold great promise in electronics, energy, materials and biomedical areas. Graphene oxide (GO) is one of the most extensively studied graphene derivatives. In order to improve GO electrical properties, nanoplatelets are chemically reduced, thus increasing nanoplatelet conductivity. This reduced GO (rGO) shows different properties and behavior compared to GO. Graphene-based wastes are expected to end up in the marine environment. Here we aimed to assess the potential toxic effects of GO and rGO to marine organisms by using in vitro assays with mussel (Mytilus galloprovincialis) hemocytes. Cells were exposed to a wide range of concentrations (up to 100mg/L) of GO (with and without polyvinylpyrrolidone-PVP as stabilizing agent: GO and GO-PVP) and rGO with PVP (rGO-PVP) to assess cytotoxicity and cell membrane integrity. Then, cells were exposed to sublethal concentrations of GO and rGO-PVP to assess their subcellular distribution through transmission electron microscopy (TEM) and to evaluate their effects on ROS production. GO, GO-PVP and rGO-PVP showed low and concentration-dependent cytotoxicity. rGO-PVP (LC50=29.902 and 33.94mg/L depending on the origin) was more toxic than GO (LC50=49.84 and 54.51mg/L depending on the origin) and GO-PVP (LC50=43.72mg/L). PVP was not toxic to hemocytes but increased bioavailability and toxicity of nanoplatelets. At TEM, GO and rGO-PVP nanoplatelets caused invaginations and perforations of the plasma membrane, which agrees with the observed decrease in cell membrane integrity. Nanoplatelets were internalized, at a higher extent for rGO-PVP than for GO, and found in the cytosol and in endolysosomal vesicles of hemocytes. Both GO and rGO-PVP increased ROS production at the highest sublethal concentration tested. In conclusion, GO, GO-PVP and rGO-PVP are not highly toxic to mussel cells but they cause membrane damage and their toxicity is ROS-mediated. Finally, in vitro assays with mussel hemocytes are sensitive tools to detect toxic effects of graphene-based nanomaterials.


Toxicology in Vitro | 2018

Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells

Alberto Katsumiti; Andrew J. Thorley; Inmaculada Arostegui; Paul Reip; Eugenia Valsami-Jones; Teresa D. Tetley; Miren P. Cajaraville

There is a need to assess human and ecosystem health effects of copper oxide nanoparticles (CuO NPs), extensively used in many industrial products. Here, we aimed to determine the cytotoxicity and cellular mechanisms involved in the toxicity of CuO NPs in mussel cells (hemocytes and gill cells) in parallel with exposures to ionic Cu and bulk CuO, and to compare the sensitivity of mussel primary cells with a well-established human cell line (pulmonary TT1 cells). At similar doses, CuO NPs promoted dose-dependent cytotoxicity and increased reactive oxygen species (ROS) production in mussel and human cells. In mussel cells, ionic Cu was more toxic than CuO NPs and the latter more than bulk CuO. Ionic Cu and CuO NPs increased catalase and acid phosphatase activities in both mussel cells and decreased gill cells Na-K-ATPase activity. All Cu forms produced DNA damage in hemocytes, whereas in gill cells only ionic Cu and CuO NPs were genotoxic. Induction of the MXR transport activity was found in gill cells exposed to all forms of Cu and in hemocytes exposed to ionic Cu and CuO NPs. Phagocytosis increased only in hemocytes exposed to CuO NPs, indicating a nanoparticle-specific immunostimulatory effect. In conclusion, toxicity of CuO NPs is driven by ROS in human and mussel cells. Mussel cells respond to CuO NP exposure by triggering an array of defensive mechanisms.


Aquatic Toxicology | 2018

Synthesis methods influence characteristics, behaviour and toxicity of bare CuO NPs compared to bulk CuO and ionic Cu after in vitro exposure of Ruditapes philippinarum hemocytes

Moritz Volland; Miriam Hampel; Alberto Katsumiti; M.P. Yeste; José M. Gatica; Miren P. Cajaraville; Julián Blasco

Copper oxide (CuO) nanoparticles (NPs) are increasingly investigated, developed and produced for a wide range of industrial and consumer products. Notwithstanding their promising novel applications, concern has been raised that their increased use and disposal could consequently increase their release into marine systems and potentially affect species within. To date the understanding of factors and mechanisms of CuO (nano-) toxicity to marine invertebrates is still limited. Hence, we studied the characteristics and behaviour of two commercially available CuO NPs of similar size, but produced employing distinct synthesis methods, under various environmentally and experimentally relevant conditions. In addition, cell viability and DNA damage, as well as gene expression of detoxification, oxidative stress, inflammatory response, DNA damage repair and cell death mediator markers were studied in primary cultures of hemocytes from the marine clam Ruditapes philippinarum and, where applicable, compared to bulk CuO and ionic Cu (as CuSO4) behaviour and effects. We found that the synthesis method can influence particle characteristics and behaviour, as well as the toxicity of CuO NPs to Ruditapes philippinarum hemocytes. Our results further indicate that under the tested conditions aggregating behaviour influences the toxicity of CuO NPs by influencing their rate of extra- and intracellular dissolution. In addition, gene expression analysis identified similar transcriptional de-regulation for all tested copper treatments for the here measured suite of genes. Finally, our work highlights various differences in the aggregation and dissolution kinetics of CuO particles under environmental (marine) and cell culture exposure conditions that need consideration when extrapolating in vitro findings.


Marine Environmental Research | 2015

Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis.

Pamela Ruiz; Alberto Katsumiti; Jose A. Nieto; Jaume Bori; A. Jimeno-Romero; Paul Reip; Inmaculada Arostegui; Amaia Orbea; Miren P. Cajaraville


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012

Screening of cytotoxicity effects of different metal bearing nanoparticles on mussel hemocytes and gill cells in vitro

Alberto Katsumiti; D. Berhanu; Eugenia Valsami-Jones; Douglas Gilliland; Miriam Oron; Paul Reip; Miren P. Cajaraville


European Respiratory Journal | 2017

Immortalisation of human alveolar epithelial cells to investigate the mechanistic effects of inhaled airborne materials in vitro

Alberto Katsumiti; Pakatip Ruenraroengsak; Miren P. Cajaraville; Andrew J. Thorley; Teresa D. Tetley

Collaboration


Dive into the Alberto Katsumiti's collaboration.

Top Co-Authors

Avatar

Miren P. Cajaraville

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Inmaculada Arostegui

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Oron

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Amaia Orbea

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Pamela Ruiz

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Douglas Gilliland

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Thorley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Teresa D. Tetley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

A. Jimeno-Romero

University of the Basque Country

View shared research outputs
Researchain Logo
Decentralizing Knowledge