Pamela Ruiz
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pamela Ruiz.
Aquatic Toxicology | 2010
Eider Bilbao; Damien Raingeard; O. Diaz de Cerio; Maren Ortiz-Zarragoitia; Pamela Ruiz; Urtzi Izagirre; Amaia Orbea; Ionan Marigómez; Miren P. Cajaraville; Ibon Cancio
Thicklip grey mullets Chelon labrosus inhabit coastal and estuarine areas where they can be chronically exposed to commonly released pollutants such as polycyclic aromatic hydrocarbons (PAHs) and perfluorinated compounds. These pollutants can also originate from accidental spills, such as the Prestige oil spill in 2002, which resulted in the release of a heavy fuel oil that affected coastal ecosystems in the Bay of Biscay. Peroxisome proliferation (PP), induced biotransformation metabolism, immunosuppression and endocrine disruption are some of the possible biological effects caused by such chemicals. With the aim of studying the effects of organic toxic chemicals on such biological processes at the transcriptional and at the cell/tissue level, juvenile mullets were exposed to the typical mammalian peroxisome proliferator perfluorooctane sulfonate (PFOS), and to fresh (F) and weathered (WF) Prestige-like heavy fuel oil for 2 and 16 days. First, fragments of genes relevant to biotransformation, immune/inflammatory and endocrine disruption processes were cloned using degenerate primers. Fuel oil elicited a significant PP response as proved by the transcriptional upregulation of palmitoyl-CoA oxidase (aox1), peroxisome proliferator activated receptor alpha (pparalpha) and retinoic X receptor, by the AOX1 activity induction and by the increased peroxisomal volume density. PFOS only elicited a significant induction of AOX1 activity at day 2 and of PPARalpha mRNA expression at day 16. All treatments significantly increased catalase mRNA expression at day 16 in liver and at day 2 in gill. Cyp1a transcription (liver and gill) and EROD activity were induced in fuel oil treated organisms. In the case of phase II metabolism only hepatic glutathione S-transferase mRNA was overexpressed in mullets exposed to WF for 16 days. Functionally, this response was reflected in a significant accumulation of bile PAH metabolites. WF treated fish accumulated mainly high molecular weight metabolites while F exposure resulted in accumulation of mainly low molecular ones. Fuel oil significantly regulated immune response related complement component C3 and hepcidin transcription followed by a significant regulation of inflammatory response related apolipoprotein-A1 and fatty acid binding protein mRNAs at day 16. These responses were accompanied by a significant hepatic inflammatory response with lymphocyte accumulations (IRLA) and accumulation of melanomacrophage centers (MMC). PFOS did not elicit any transcriptional response in the studied biotransformation and immune related genes, although histologically significant effects were recorded in IRLA and MMC. A significant reduction of lysosomal membrane stability was observed in all exposed animals. No endocrine disruption effects were observed in liver while brain aromatase mRNA was overexpressed after all treatments at day 2 and estrogen receptor alpha was downregulated under WF exposure at day 16. These results show new molecular and cellular biomarkers of exposure to organic chemicals and demonstrate that in mullets PP could be regulated through molecular mechanisms similar to those in rodents, although the typical mammalian peroxisome proliferator PFOS and heavy fuel oil follow divergent mechanisms of action.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009
Urtzi Izagirre; Pamela Ruiz; Ionan Marigómez
Lysosomal biomarkers are early warning signals of the biological effects caused by environmental pollutants but the promptness of lysosomal responses to pollutants has not been investigated yet. This work is aimed to determine the response-time of digestive cell lysosomes in mussels exposed to metals and hydrocarbons. Mussels, Mytilus galloprovincialis, were exposed, under laboratory conditions to Cd and to the water-accommodated fraction of a lubricant oil. One mussel per experimental group was sacrificed and processed every hour from 0 h to 30 h. Changes in AcP activity, immunoreactivity and LMS test based on AcP histochemistry, discriminates significantly control and exposed mussels within 5 h exposure. The present results suggested that after 15-20 h exposure digestive cell loss might be accompanied by increased AcP activity (extralysosomal) without a parallel increase in the levels of immunoreactive AcP protein, especially after Cd-exposure. The reduced labilisation period of lysosomal membrane constitute a cost effective early warning signal that, however, is not necessarily correlated with the exposure time. The routine application of immunochemical techniques deserves more research efforts before its implementation although, these techniques are very valuable to understand and interpret correctly lysosomal responses to pollutants.
Aquatic Toxicology | 2013
Pamela Ruiz; Seila Díaz; Amaia Orbea; María J. Carballal; Antonio Villalba; Miren P. Cajaraville
Disseminated neoplasia (DN) is a pathological condition reported for several species of marine bivalves throughout the world, but its aetiology has not yet been satisfactorily explained. It has been suggested that chemical contamination could be a factor contributing to neoplasia. The aim of the present study was to compare cell and tissue biomarkers and the transcription level of cancer-related genes in cockles (Cerastoderma edule) affected by DN with those of healthy cockles in relation to chemical contaminant burdens. For this, cockles were collected from a natural bed in Cambados (Ria de Arousa, Galicia) in May 2009. The prevalence of DN was 12.36% and 3 degrees of DN severity were distinguished. No significant differences in metal accumulation, non-specific inflammatory responses and parasites were observed between healthy and DN-affected cockles. Lysosomal membrane stability was significantly reduced in cockles affected by DN, which indicates a poorer health condition. Very low frequencies of micronuclei were recorded and no significant differences were detected between DN severity groups. Haemolymph analyses showed a higher frequency of mitotic figures and binucleated cells in cockles affected by moderate and heavy DN than in healthy ones. Neoplastic animals showed significantly higher transcription levels of p53 and ras than healthy cockles and mutational alterations in ras gene sequence were detected. Low concentrations of metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls and phthalate esters were measured in cockles from Cambados. In conclusion, cockles affected by DN suffer a general stress situation and have altered patterns of cancer-related gene transcription. Further studies are in progress to elucidate mechanisms of carcinogenesis in this species.
Marine Environmental Research | 2015
Pamela Ruiz; Alberto Katsumiti; Jose A. Nieto; Jaume Bori; A. Jimeno-Romero; Paul Reip; Inmaculada Arostegui; Amaia Orbea; Miren P. Cajaraville
Ecotoxicology | 2012
Pamela Ruiz; Amaia Orbea; Jeanette M. Rotchell; Miren P. Cajaraville
Aquatic Toxicology | 2012
Pamela Ruiz; Maren Ortiz-Zarragoitia; Amaia Orbea; Michael Theron; Stéphane Le Floch; Miren P. Cajaraville
Marine Environmental Research | 2017
Oihane Diaz de Cerio; Eider Bilbao; Pamela Ruiz; Belén G. Pardo; Paulino Martínez; Miren P. Cajaraville; Ibon Cancio
Ecotoxicology | 2014
Pamela Ruiz; Maren Ortiz-Zarragoitia; Amaia Orbea; Sjur Vingen; Anne Hjelle; Thierry Baussant; Miren P. Cajaraville
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012
Alberto Katsumiti; Pamela Ruiz; J. Bori; J.A. Nieto; Paul Reip; Amaia Orbea; Miren P. Cajaraville
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2010
Pamela Ruiz; Amaia Orbea; Miren P. Cajaraville; S. Díaz; M.J. Carballal; A. Villalba