Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Maran is active.

Publication


Featured researches published by Alberto Maran.


IEEE Transactions on Biomedical Engineering | 2007

Glucose Concentration can be Predicted Ahead in Time From Continuous Glucose Monitoring Sensor Time-Series

Giovanni Sparacino; Francesca Zanderigo; Stefano Corazza; Alberto Maran; Andrea Facchinetti; Claudio Cobelli

A clinically important task in diabetes management is the prevention of hypo/hyperglycemic events. In this proof-of-concept paper, we assess the feasibility of approaching the problem with continuous glucose monitoring (CGM) devices. In particular, we study the possibility to predict ahead in time glucose levels by exploiting their recent history monitored every 3 min by a minimally invasive CGM system, the Glucoday, in 28 type 1 diabetic volunteers for 48 h. Simple prediction strategies, based on the description of past glucose data by either a first-order polynomial or a first-order autoregressive (AR) model, both with time-varying parameters determined by weighted least squares, are considered. Results demonstrate that, even by using these simple methods, glucose can be predicted ahead in time, e.g., with a prediction horizon of 30 min crossing of the hypoglycemic threshold can be predicted 20-25 min ahead in time, a sufficient margin to mitigate the event by sugar ingestion


Journal of diabetes science and technology | 2010

Multinational Study of Subcutaneous Model-Predictive Closed-Loop Control in Type 1 Diabetes Mellitus: Summary of the Results

Boris P. Kovatchev; Claudio Cobelli; Eric Renard; Stacey M. Anderson; Marc D. Breton; Stephen D. Patek; William L. Clarke; Daniela Bruttomesso; Alberto Maran; Silvana Costa; Angelo Avogaro; Chiara Dalla Man; Andrea Facchinetti; Lalo Magni; Giuseppe De Nicolao; Jerome Place; Anne Farret

Background: In 2008–2009, the first multinational study was completed comparing closed-loop control (artificial pancreas) to state-of-the-art open-loop therapy in adults with type 1 diabetes mellitus (T1DM). Methods: The design of the control algorithm was done entirely in silico, i.e., using computer simulation experiments with N = 300 synthetic “subjects” with T1DM instead of traditional animal trials. The clinical experiments recruited 20 adults with T1DM at the Universities of Virginia (11); Padova, Italy (6); and Montpellier, France (3). Open-loop and closed-loop admission was scheduled 3–4 weeks apart, continued for 22 h (14.5 h of which were in closed loop), and used a continuous glucose monitor and an insulin pump. The only difference between the two sessions was that insulin dosing was performed by the patient under a physicians supervision during open loop, whereas insulin dosing was performed by a control algorithm during closed loop. Results: In silico design resulted in rapid (less than 6 months compared to years of animal trials) and cost-effective system development, testing, and regulatory approvals in the United States, Italy, and France. In the clinic, compared to open-loop, closed-loop control reduced nocturnal hypoglycemia (blood glucose below 3.9 mmol/liter) from 23 to 5 episodes (p < .01) and increased the amount of time spent overnight within the target range (3.9 to 7.8 mmol/liter) from 64% to 78% (p = .03). Conclusions: In silico experiments can be used as viable alternatives to animal trials for the preclinical testing of insulin treatment strategies. Compared to open-loop treatment under identical conditions, closed-loop control improves the overnight regulation of diabetes.


Journal of diabetes science and technology | 2009

Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier

Daniela Bruttomesso; Anne Farret; Silvana Costa; Maria Cristina Marescotti; Monica Vettore; Angelo Avogaro; Antonio Tiengo; Chiara Dalla Man; Jerome Place; Andrea Facchinetti; Stefania Guerra; Lalo Magni; Giuseppe De Nicolao; Claudio Cobelli; Eric Renard; Alberto Maran

New effort has been made to develop closed-loop glucose control, using subcutaneous (SC) glucose sensing and continuous subcutaneous insulin infusion (CSII) from a pump, and a control algorithm. An approach based on a model predictive control (MPC) algorithm has been utilized during closed-loop control in type 1 diabetes patients. Here we describe the preliminary clinical experience with this approach. In Padova, two out of three subjects showed better performance with the closed-loop system compared to open loop. Altogether, mean overnight plasma glucose (PG) levels were 134 versus 111 mg/dl during open loop versus closed loop, respectively. The percentage of time spent at PG > 140 mg/dl was 45% versus 12%, while postbreakfast mean PG was 165 versus 156 mg/dl during open loop versus closed loop, respectively. Also, in Montpellier, two patients out of three showed a better glucose control during closed-loop trials. Avoidance of nocturnal hypoglycemic excursions was a clear benefit during algorithm-guided insulin delivery in all cases. This preliminary set of studies demonstrates that closed-loop control based entirely on SC glucose sensing and insulin delivery is feasible and can be applied to improve glucose control in patients with type 1 diabetes, although the algorithm needs to be further improved to achieve better glycemic control. Six type 1 diabetes patients (three in each of two clinical investigation centers in Padova and Montpellier), using CSII, aged 36 ± 8 and 48 ± 6 years, duration of diabetes 12 ± 8 and 29 ± 4 years, hemoglobin A1c 7.4% ± 0.1% and 7.3% ± 0.3%, body mass index 23.2 ± 0.3 and 28.4 ± 2.2 kg/m2, respectively, were studied on two occasions during 22 h overnight hospital admissions 2–4 weeks apart. A Freestyle Navigator® continuous glucose monitor and an OmniPod® insulin pump were applied in each trial. Admission 1 used open-loop control, while admission 2 employed closed-loop control using our MPC algorithm.


Computer Methods and Programs in Biomedicine | 2002

A telemedicine support for diabetes management: the T-IDDM project

Riccardo Bellazzi; Cristiana Larizza; Stefania Montani; Alberto Riva; Mario Stefanelli; Giuseppe d'Annunzio; Renata Lorini; Enrique J. Gómez; Elena Hernando; Eulàlia Brugués Brugués; J Cermeño; Rosa Corcoy; A. de Leiva; Claudio Cobelli; Gianluca Nucci; S. Del Prato; Alberto Maran; E Kilkki; J Tuominen

In the context of the EU funded Telematic Management of Insulin-Dependent Diabetes Mellitus (T-IDDM) project, we have designed, developed and evaluated a telemedicine system for insulin dependent diabetic patients management. The system relies on the integration of two modules, a Patient Unit (PU) and a Medical Unit (MU), able to communicate over the Internet and the Public Switched Telephone Network. Using the PU, patients are allowed to automatically download their monitoring data from the blood glucose monitoring device, and to send them to the hospital data-base; moreover, they are supported in their every day self monitoring activity. The MU provides physicians with a set of tools for data visualization, data analysis and decision support, and allows them to send messages and/or therapeutic advice to the patients. The T-IDDM service has been evaluated through the application of a formal methodology, and has been used by European patients and physicians for about 18 months. The results obtained during the project demonstration, even if obtained on a pilot study of 12 subjects, show the feasibility of the T-IDDM telemedicine service, and seem to substantiate the hypothesis that the use of the system could present an advantage in the management of insulin dependent diabetic patients, by improving communications and, potentially, clinical outcomes.


Diabetic Medicine | 2008

In Type 1 diabetic patients with good glycaemic control, blood glucose variability is lower during continuous subcutaneous insulin infusion than during multiple daily injections with insulin glargine

Daniela Bruttomesso; Dalia Crazzolara; Alberto Maran; S. Costa; M Dal Pos; A. Girelli; G. Lepore; M Aragona; Elisabetta Iori; U. Valentini; S. Del Prato; Antonio Tiengo; A. Buhr; Roberto Trevisan; Aldo Baritussio

Aims  The superiority of continuous subcutaneous insulin infusion (CSII) over multiple daily injections (MDI) with glargine is uncertain. In this randomized cross‐over study, we compared CSII and MDI with glargine in patients with Type 1 diabetes well controlled with CSII. The primary end‐point was glucose variability.


Diabetologia | 1995

Lack of preservation of higher brain function during hypoglycaemia in patients with intensively-treated IDDM

Alberto Maran; Jill Lomas; I. A. Macdonald; Stephanie A. Amiel

SummarySevere hypoglycaemia with cognitive dysfunction is 3 times more common in intensively, rather than conventionally, treated insulin-dependent diabetes mellitus (IDDM). To investigate the effect of diabetes control on higher brain function during acute hypoglycaemia, we studied one of the earliest detectable changes in cognitive function, i.e. the four-choice reaction time, and symptomatic and hormonal responses during euglycaemic and hypoglycaemic clamping in human subjects. There were no changes in symptoms or counterregulatory hormones and four-choice reaction time was stable during 220 min of euglycaemic insulin clamping in five men with IDDM, with a coefficient of variation of less than 2.2% (1% for accuracy) for the cognitive function test. During stepped hypoglycaemic clamping however, hormonal responses and subjective awareness of hypoglycaemia occurred in all groups but started at much lower blood glucose concentrations in eight intensively-treated diabetic subjects (Group 1) than in ten conventionally-treated (Group 2) or in eight non-diabetic subjects (Group 3). For example, for adrenaline, plasma glucose thresholds were 2.7±0.2 vs 3.4±0.2 and 3.2±0.1 mmol/l, respectively, p<0.05, Group 1 vs Groups 2 or 3 and for subjective awareness of hypoglycaemia 2.3±0.2 vs 3.0±0.1 and 3.2±0.1 mmol/l, p ≤ 0.003), as in previous studies. In contrast, deterioration in reaction time occurred at 3.2±0.3, 3.2±0.2 and 3.0+0.2 mmol/l, respectively (p=NS), thus occurring at higher glucose levels than subjective awareness in the intensively-treated subjects only. The altered hierarchy of responses to hypoglycaemia in well-controlled intensively-treated diabetes explains the increased risk of severe hypoglycaemia without warning seen in such patients.


Diabetes Technology & Therapeutics | 2010

Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes.

Alberto Maran; Paola Pavan; Barbara Bonsembiante; Erica Brugin; Andrea Ermolao; Angelo Avogaro; Marco Zaccaria

OBJECTIVE Exercise is a cornerstone of diabetes therapy in type 1 diabetes mellitus (DMT1) patients. The type of exercise is important in determining the propensity to hypoglycemia. We assessed, by continuous glucose monitoring (CGM), the glucose profiles during and in the following 20h after a session of two different types of exercise. RESEARCH DESIGN AND METHODS Eight male volunteers with well-controlled DMT1 were studied. They underwent 30min of both intermittent high-intensity exercise (IHE) and moderate-intensity exercise (MOD) in random order. Expired air was recorded during exercise, while metabolic and hormonal determinations were performed before and for 120 min after exercises. The CGM system and activity monitor were applied for the subsequent 20h. RESULTS Blood glucose level declined during both type of exercise. At 150 min following the start of exercise, plasma glucose content was slightly higher after IHE. No changes were observed in plasma insulin concentration. A significant increase of norepinephrine concentration was noticed during IHE. Between midnight and 6:00 a.m. the glucose levels were significantly lower after IHE than those observed after MOD (area under the curve, 23.3 ± 3 vs. 16 ± 3 mg/dL/420 min [P = 0.04]; mean glycemia at 3 a.m., 225 ± 31 vs. 147 ± 17 mg/dL [P<0.05]). The number of hypoglycemic episodes after IHE was higher than that observed after MOD (seven vs. two [P<0.05]). CONCLUSIONS We demonstrate that (1) CGM is a useful approach in DMT1 patients who undergo an exercise program and (2) IHE is associated with delayed nocturnal hypoglycemia.


Current Diabetes Reviews | 2008

Continuous Glucose Monitoring Time Series and Hypo/Hyperglycemia Prevention: Requirements, Methods, Open Problems

Giovanni Sparacino; Andrea Facchinetti; Alberto Maran; Claudio Cobelli

A clinically important task in diabetes management is the prevention of hypo/hyperglycemic events. The availability of continuous glucose monitoring (CGM) devices allow to develop new strategies, but new problems have also emerged. In this contribution, we discuss three major challenges which, in practical real time CGM applications, should be dealt with: filtering to enhance the signal-to-noise ratio, ahead-of-time prediction of glucose concentration, and generation of hypo/hyper-alerts. For all these challenges, some techniques, with a different degree of sophistication, have been proposed recently in the literature, but several issues remain open.


Diabetologia | 2000

Brain function rescue effect of lactate following hypoglycaemia is not an adaptation process in both normal and Type I diabetic subjects

Alberto Maran; Cristina Crepaldi; S Trupiani; T Lucca; Elisabetta Jori; I. A. Macdonald; Antonio Tiengo; Angelo Avogaro; S. Del Prato

Aims/hypothesis. We have previously shown that lactate protects brain function during insulin-induced hypoglycaemia. An adaptation process could, however, not be excluded because the blood lactate increase preceded hypoglycaemia.¶Methods. We studied seven healthy volunteers and seven patients with Type I (insulin-dependent) diabetes mellitus with a hyperinsulinaemic (1.5 mU · kg–1· min–1) stepwise hypoglycaemic clamp (4.8 to 3.6, 3.0 and 2.8 mmo/l) with and without Na-lactate infusion (30 μmol · kg–1· min–1) given after initiation of hypoglycaemic symptoms.¶Results. The glucose threshold for epinephrine response was similar (control subjects 3.2 ± 0.1 vs 3.2 ± 0.1, diabetic patients = 3.5 ± 0.1 vs 3.5 ± 0.1 mmol/l) in both studies. The magnitude of the response was, however, blunted by lactate infusion (AUC; control subjects 65 ± 28 vs 314 ± 55 nmol/l/180 min, zenith = 2.6 ± 0.5 vs 4.8 ± 0.7 nmol/l, p < 0.05; diabetic patients = 102 ± 14 vs 205 ± 40 nmol/l/180 min, zenith = 1.4 ± 0.4 vs 3.2 ± 0.3 nmol/l, p < 0.01). The glucose threshold for symptoms was also similar (C = autonomic 3.0 ± 0.1 vs 3.0 ± 0.1, neuroglycopenic = 2.8 ± 0.1 vs 2.9 ± 0.1 mmol/l, D = autonomic 3.2 ± 0.1 vs 3.2 ± 0.1, neuroglycopenic 3.1 ± 0.1 vs 3.2 ± 0.1 mmol/l) but peak responses were significantly attenuated by lactate (score at 160 min C = 2.6 ± 1 vs 8.8 ± 1, and 0.4 ± 0.4 vs 4.8 ± 1, respectively; p = 0.02–0.01, D = 1.3 ± 0.5 vs 6.3 ± 1.7, and 2.3 ± 0.6 vs 5.7 ± 1.1 p = 0.07–0.02). Cognitive function deteriorated in both studies at similar glucose thresholds (C = 3.1 ± 0.1 vs 3.0 ± 0.1, D = 3.2 ± 0.1 vs 3.3 ± 0.2 mmol/l). Although in normal subjects a much smaller impairment was observed with lactate infusion (Δ four-choice reaction time at 160 min = 22 ± 12 vs 77 ± 31 ms; p = 0.02), in Type I diabetic patients lactate infusion was associated with an improvement in cognitive dysfunction (0.2 ± 0.4 vs –38 ± 0.2 Δ ms, p = 0.0001).¶Conclusion/interpretation. A blood lactate increase after the development of hypoglycaemic symptoms reduces counterregulatory and symptomatic responses to insulin-induced hypoglycaemia and favours brain function rescue both in normal and diabetic subjects. These findings confirm that lactate is an alternative substrate to glucose for cerebral metabolism under hypoglycaemic conditions. [Diabetologia (2000) 43: 733–741]


Diabetic Medicine | 2007

Nocturnal hypoglycaemia in Type 1 diabetic patients, assessed with continuous glucose monitoring: frequency, duration and associations

I. M. E. Wentholt; Alberto Maran; N. Masurel; Robert J. Heine; J. B. L. Hoekstra; J. H. DeVries

Aims  We quantified the occurrence and duration of nocturnal hypoglycaemia in individuals with Type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII) or multiple‐injection therapy (MIT) using a continuous subcutaneous glucose sensor.

Collaboration


Dive into the Alberto Maran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Cobelli

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Renard

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Alessandro Poscia

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge