Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Noriega-Crespo is active.

Publication


Featured researches published by Alberto Noriega-Crespo.


Astrophysical Journal Supplement Series | 2004

THE MULTIBAND IMAGING PHOTOMETER FOR SPITZER (MIPS)

G. H. Rieke; Erick T. Young; C. W. Engelbracht; D. M. Kelly; Frank J. Low; E. E. Haller; Jeffrey W. Beeman; Karl D. Gordon; J. A. Stansberry; Karl Anthony Misselt; James Cadien; J. E. Morrison; Gil Rivlis; William B. Latter; Alberto Noriega-Crespo; Deborah Lynne Padgett; Karl R. Stapelfeldt; Dean C. Hines; E. Egami; James Muzerolle; A. Alonso-Herrero; M. Blaylock; H. Dole; Joannah L. Hinz; Casey Papovich; P. G. Pérez-González; Paul S. Smith; K. Y. L. Su; Lee Bennett; D. T. Frayer

The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160 ?m and measurements of spectral energy distributions between 52 and 100 ?m at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point-spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The 24 ?m array has excellent photometric properties, and measurements with rms relative errors of about 1% can be obtained. The two longer-wavelength arrays use detectors with poor photometric stability, but a system of onboard stimulators used for relative calibration, combined with a unique data pipeline, produce good photometry with rms relative errors of less than 10%.


Publications of the Astronomical Society of the Pacific | 2009

MIPSGAL: A Survey of the Inner Galactic Plane at 24 and 70 μm

Sean J. Carey; Alberto Noriega-Crespo; Donald Robert Mizuno; Sachin S. Shenoy; R. Paladini; K. E. Kraemer; S. D. Price; Nicolas Flagey; E. Ryan; James G. Ingalls; Thomas A. Kuchar; Daniela Pinheiro Gonçalves; Remy Indebetouw; N. Billot; Francine Roxanne Marleau; Deborah Lynne Padgett; Luisa Marie Rebull; E. Bressert; Babar Ali; S. Molinari; P. G. Martin; G. B. Berriman; F. Boulanger; William B. Latter; M.-A. Miville-Deschênes; R. Shipman; L. Testi

MIPSGAL is a 278 deg^2 survey of the inner Galactic plane using the Multiband Infrared Photometer for Spitzer aboard the Spitzer Space Telescope. The survey field was imaged in two passbands, 24 and 70 μm with resolutions of 6″ and 18″, respectively. The survey was designed to provide a uniform, well-calibrated and well-characterized data set for general inquiry of the inner Galactic plane and as a longer-wavelength complement to the shorter-wavelength Spitzer survey of the Galactic plane: Galactic Plane Infrared Mapping Survey Extraordinaire. The primary science drivers of the current survey are to identify all high-mass (M > 5 M⊙) protostars in the inner Galactic disk and to probe the distribution, energetics, and properties of interstellar dust in the Galactic disk. The observations were planned to minimize data artifacts due to image latents at 24 μm and to provide full coverage at 70 μm. Observations at ecliptic latitudes within 15° of the ecliptic plane were taken at multiple epochs to help reject asteroids. The data for the survey were collected in three epochs, 2005 September–October, 2006 April, and 2006 October with all of the data available to the public. The estimated point-source sensitivities of the survey are 2 and 75 mJy (3 σ) at 24 and 70 μm, respectively. Additional data processing was needed to mitigate image artifacts due to bright sources at 24 μm and detector responsivity variations at 70 μm due to the large dynamic range of the Galactic plane. Enhanced data products including artifact-mitigated mosaics and point-source catalogs are being produced with the 24 μm mosaics already publicly available from the NASA/IPAC Infrared Science Archive. Some preliminary results using the enhanced data products are described.


Publications of the Astronomical Society of the Pacific | 2007

Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 μm Calibration

C. W. Engelbracht; M. Blaylock; K. Y. L. Su; Jeonghee Rho; G. H. Rieke; James Muzerolle; Deborah Lynne Padgett; Dean C. Hines; Karl D. Gordon; D. Fadda; Alberto Noriega-Crespo; D. M. Kelly; William B. Latter; Joannah L. Hinz; Karl Anthony Misselt; J. E. Morrison; J. A. Stansberry; D. L. Shupe; Susan Renee Stolovy; Wm. A. Wheaton; Erick T. Young; G. Neugebauer; Stefanie Wachter; P. G. Pérez-González; D. T. Frayer; Francine Roxanne Marleau

We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 μm channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is MJy sr^−1 (DN s^−1)^−1, with a nominal uncertainty of 2%. We discuss the data reduction procedures required to attain this accuracy; without these procedures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is lower. We extend this work to predict 24 μm flux densities for a sample of 238 stars that covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 μm. This sample covers a factor of 460 in 24 μm flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3 s exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10 and 30 s exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a rms scatter of only 0.4%. Finally, we show that the point-spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties.


The Astrophysical Journal | 2011

A 100 pc ELLIPTICAL AND TWISTED RING OF COLD AND DENSE MOLECULAR CLOUDS REVEALED BY HERSCHEL AROUND THE GALACTIC CENTER

S. Molinari; John Bally; Alberto Noriega-Crespo; M. Compiegne; J.-P. Bernard; D. Paradis; P. Martin; L. Testi; M. J. Barlow; T. J. T. Moore; R. Plume; B. M. Swinyard; A. Zavagno; L. Calzoletti; A. M. di Giorgio; D. Elia; F. Faustini; P. Natoli; M. Pestalozzi; S. Pezzuto; F. Piacentini; G. Polenta; D. Polychroni; E. Schisano; A. Traficante; M. Veneziani; Cara Battersby; Michael G. Burton; Sean J. Carey; Yasuo Fukui

Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a similar to 3 x 10(7) M-circle dot ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40 degrees with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x(2) orbits predicted for the barred Galactic potential. Sgr A* is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data.


Publications of the Astronomical Society of the Pacific | 2007

Absolute calibration and characterization of the multiband imaging photometer for Spitzer. II. 70 μm imaging

Karl D. Gordon; C. W. Engelbracht; D. Fadda; J. A. Stansberry; Stefanie Wachter; D. T. Frayer; G. H. Rieke; Alberto Noriega-Crespo; William B. Latter; Erick T. Young; G. Neugebauer; Zoltan Balog; Jeffrey W. Beeman; H. Dole; E. Egami; E. E. Haller; Dean C. Hines; D. M. Kelly; Francine Roxanne Marleau; Karl Anthony Misselt; J. E. Morrison; P. G. Pérez-González; Jeonghee Rho; Wm. A. Wheaton

The absolute calibration and characterization of the Multiband Imaging Photometer for Spitzer (MIPS) 70 μm coarse‐and fine‐scale imaging modes are presented based on over 2.5 yr of observations. Accurate photometry (especially for faint sources) requires two simple processing steps beyond the standard data reduction to remove long‐term detector transients. Point‐spread function (PSF) fitting photometry is found to give more accurate flux densities than aperture photometry. Based on the PSF fitting photometry, the calibration factor shows no strong trend with flux density, background, spectral type, exposure time, or time since anneals. The coarse‐scale calibration sample includes observations of stars with flux densities from 22 mJy to 17 Jy, on backgrounds from 4 to 26 MJy sr^(−1), and with spectral types from B to M. The coarse‐scale calibration is 702 ± 35 MJy sr^(−1) MIPS70^(−1) (5% uncertainty) and is based on measurements of 66 stars. The instrumental units of the MIPS 70 μm coarse‐ and fine‐scale imaging modes are called MIPS70 and MIPS70F, respectively. The photometric repeatability is calculated to be 4.5% from two stars measured during every MIPS campaign and includes variations on all timescales probed. The preliminary fine‐scale calibration factor is 2894 ± 294 MJy sr^(−1) MIPS70F^(−1) (10% uncertainty) based on 10 stars. The uncertainties in the coarse‐ and fine‐scale calibration factors are dominated by the 4.5% photometric repeatability and the small sample size, respectively. The 5 σ, 500 s sensitivity of the coarse‐scale observations is 6–8 mJy. This work shows that the MIPS 70 μm array produces accurate, well‐calibrated photometry and validates the MIPS 70 μm operating strategy, especially the use of frequent stimulator flashes to track the changing responsivities of the Ge:Ga detectors.


Astrophysical Journal Supplement Series | 2010

The Taurus Spitzer Survey: New Candidate Taurus Members Selected Using Sensitive Mid-Infrared Photometry

Luisa Marie Rebull; Deborah Lynne Padgett; Caer-Eve McCabe; Lynne A. Hillenbrand; Karl R. Stapelfeldt; Alberto Noriega-Crespo; Sean J. Carey; Timothy Young Brooke; Tracy L. Huard; Susan Terebey; Marc Audard; Jean Monin; Misato Fukagawa; M. Güdel; Gillian R. Knapp; F. Ménard; Lori E. Allen; J. R. Angione; C. Baldovin-Saavedra; J. Bouvier; Kevin R. Briggs; Catherine Dougados; Neal J. Evans; Nicolas Flagey; S. Guieu; N. Grosso; Adrian M. Glauser; Paul M. Harvey; Dean C. Hines; William B. Latter

We report on the properties of pre-main-sequence objects in the Taurus molecular clouds as observed in seven mid- and far-infrared bands with the Spitzer Space Telescope. There are 215 previously identified members of the Taurus star-forming region in our ~44 deg^2 map; these members exhibit a range of Spitzer colors that we take to define young stars still surrounded by circumstellar dust (noting that ~20% of the bona fide Taurus members exhibit no detectable dust excesses). We looked for new objects in the survey field with similar Spitzer properties, aided by extensive optical, X-ray, and ultraviolet imaging, and found 148 new candidate members of Taurus. We have obtained follow-up spectroscopy for about half the candidate sample, thus far confirming 34 new members, three probable new members, and 10 possible new members, an increase of 15%–20% in Taurus members. Of the objects for which we have spectroscopy, seven are now confirmed extragalactic objects, and one is a background Be star. The remaining 93 candidate objects await additional analysis and/or data to be confirmed or rejected as Taurus members. Most of the new members are Class II M stars and are located along the same cloud filaments as the previously identified Taurus members. Among non-members with Spitzer colors similar to young, dusty stars are evolved Be stars, planetary nebulae, carbon stars, galaxies, and active galactic nuclei.


Astronomy and Astrophysics | 2010

Dust temperature tracing the ISRF intensity in the Galaxy

J.-Ph. Bernard; D. Paradis; D. J. Marshall; L. Montier; Guilaine Lagache; R. Paladini; M. Veneziani; Christopher M. Brunt; J. C. Mottram; Peter G. Martin; I. Ristorcelli; Alberto Noriega-Crespo; M. Compiegne; Nicolas Flagey; L. D. Anderson; Cristina Popescu; Richard J. Tuffs; William T. Reach; G. J. White; M. Benedetti; L. Calzoletti; A. M. DiGiorgio; F. Faustini; M. Juvela; C. Joblin; G. Joncas; M.-A. Mivilles-Deschenes; Luca Olmi; A. Traficante; F. Piacentini

New observations withHerschel allow accurate measurement of the equilibrium temperature of large dust grains heated by the interstellar radiation field (ISRF), which is critical in deriving dust column density and masses. We present temperature maps derived from the Herschel SPIRE and PACS data in two fields along the Galactic plane, obtained as part of the Hi-GAL survey during the Herschel science demonstration phase (SDP). We analyze the distribution of the dust temperature spatially, as well as along the two lines-of-sight (LOS) through the Galaxy. The zero-level offsets in the Herschel maps were established by comparison with the IRAS and Planck data at comparable wavelengths. We derive maps of the dust temperature and optical depth by adjusting a detailed model for dust emission at each pixel. The dust temperature maps show variations in the ISRF intensity and reveal the intricate mixture of the warm dust heated by massive stars and the cold filamentary structures of embedded molecular clouds. The dust optical depth at 250 μm is well correlated with the gas column density, but with a significantly higher dust emissivity than in the solar neighborhood. We correlate the optical depth with 3-D cubes of the dust extinction to investigate variations in the ISRF strength and dust abundance along the line of sight through the spiral structure of the Galaxy. We show that the warmest dust along the LOS is located in the spiral arms of the Galaxy, and we quantify their respective IR contribution.


The Astrophysical Journal | 2006

Spitzer/mips infrared imaging of m31: further evidence for a spiral/ring composite structure

Karl D. Gordon; Jeremy Bailin; C. W. Engelbracht; G. H. Rieke; Karl Anthony Misselt; William B. Latter; Eric T. Young; Matthew L. N. Ashby; Pauline Barmby; Brad K. Gibson; Dean C. Hines; Joannah L. Hinz; Oliver Krause; Deborah A. Levine; Francine Roxanne Marleau; Alberto Noriega-Crespo; Susan Renee Stolovy; David Allan Thilker; M. Werner

New images of M31 at 24, 70, and 160 μm taken with the Multiband Imaging Photometer for Spitzer (MIPS) reveal the morphology of the dust in this galaxy. This morphology is well represented by a composite of two logarithmic spiral arms and a circular ring (radius ~10 kpc) of star formation offset from the nucleus. The two spiral arms appear to start at the ends of a bar in the nuclear region and extend beyond the star-forming ring. As has been found in previous work, the spiral arms are not continuous, but composed of spiral segments. The star-forming ring is very circular except for a region near M32 where it splits. The lack of well-defined spiral arms and the prominence of the nearly circular ring suggest that M31 has been distorted by interactions with its satellite galaxies. Using new dynamical simulations of M31 interacting with M32 and NGC 205, we find that, qualitatively, such interactions can produce an offset, split ring like that seen in the MIPS images.


Publications of the Astronomical Society of the Pacific | 2007

Absolute calibration and characterization of the multiband imaging photometer for Spitzer - III. An asteroid-based calibration of MIPS at 160 μm

J. A. Stansberry; Karl D. Gordon; Bidushi Bhattacharya; C. W. Engelbracht; G. H. Rieke; Francine Roxanne Marleau; D. Fadda; D. T. Frayer; Alberto Noriega-Crespo; Stefanie Wachter; Erick T. Young; Thomas Müller; D. M. Kelly; M. Blaylock; David A. Henderson; G. Neugebauer; Jeffrey W. Beeman; E. E. Haller

We describe the absolute calibration of the Multiband Imaging Photometer for Spitzer (MIPS) 160 μm channel. After the on‐orbit discovery of a near‐IR ghost image that dominates the signal for sources hotter than about 2000 K, we adopted a strategy utilizing asteroids to transfer the absolute calibrations of the MIPS 24 and 70 μm channels to the 160 μm channel. Near‐simultaneous observations at all three wavelengths are taken, and photometry at the two shorter wavelengths is fit using the standard thermal model. The 160 μm flux density is predicted from those fits and compared with the observed 160 μm signal to derive the conversion from instrumental units to surface brightness. The calibration factor we derive is 41.7 MJy sr^(−1) MIPS160^(−1) (MIPS160 being the instrumental units). The scatter in the individual measurements of the calibration factor, as well as an assessment of the external uncertainties inherent in the calibration, lead us to adopt an uncertainty of 5.0 MJy sr^(−1) MIPS160^(−1) (12%) for the absolute uncertainty on the 160 μm flux density of a particular source as determined from a single measurement. For sources brighter than about 2 Jy, nonlinearity in the response of the 160 μm detectors produces an underestimate of the flux density: for objects as bright as 4 Jy, measured flux densities are likely to be ≃20% too low. This calibration has been checked against that of the ISO (using ULIRGs) and IRAS (using IRAS‐derived diameters), and is consistent with those at the 5% level.


Astrophysical Journal Supplement Series | 2004

First Look at the Fomalhaut Debris Disk with the Spitzer Space Telescope

Karl R. Stapelfeldt; Elizabeth Katherine Holmes; C. H. Chen; G. H. Rieke; K. Y. L. Su; Dean C. Hines; M. Werner; Charles A. Beichman; M. Jura; Deborah Lynne Padgett; J. A. Stansberry; G. J. Bendo; James Cadien; Massimo Marengo; T. Thompson; Thangasamy Velusamy; C. R. Backus; M. Blaylock; E. Egami; C. W. Engelbracht; D. T. Frayer; Karl D. Gordon; Jocelyn Keene; William B. Latter; Tom Megeath; Karl Anthony Misselt; J. E. Morrison; James Muzerolle; Alberto Noriega-Crespo; J. Van Cleve

We present Spitzer Space Telescope early release observations of Fomalhaut, a nearby A-type star with dusty circumstellar debris. The disk is spatially resolved at 24, 70, and 160 � m using the Multiband Imaging Photometer for Spitzer (MIPS). While the disk orientation and outer radius are comparable to values measured in the submillimeter, the disk inner radius cannot be precisely defined: the central hole in the submillimeter ring is at least partially filled with emission from warm dust, seen inSpitzerInfrared Spectrograph (IRS) 17.5‐34 � m spectra and MIPS 24 � m images. The disk surface brightness becomes increasingly asymmetric toward shorter wavelengths, with the south-southeast ansa always brighter than the north-northwest one. This asymmetry may reflect perturbations on the disk by an unseen interior planet. Subject headingg circumstellar matter — infrared: stars — planetary systems — stars: individual (Fomalhaut)

Collaboration


Dive into the Alberto Noriega-Crespo's collaboration.

Top Co-Authors

Avatar

Sean J. Carey

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luisa Marie Rebull

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Paladini

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William B. Latter

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francine Roxanne Marleau

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicolas Flagey

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge