Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto P. Macho is active.

Publication


Featured researches published by Alberto P. Macho.


Molecular Cell | 2014

Plant PRRs and the Activation of Innate Immune Signaling

Alberto P. Macho; Cyril Zipfel

Despite being sessile organisms constantly exposed to potential pathogens and pests, plants are surprisingly resilient to infections. Plants can detect invaders via the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Plant PRRs are surface-localized receptor-like kinases, which comprise a ligand-binding ectodomain and an intracellular kinase domain, or receptor-like proteins, which do not exhibit any known intracellular signaling domain. In this review, we summarize recent discoveries that shed light on the molecular mechanisms underlying ligand perception and subsequent activation of plant PRRs. Notably, plant PRRs appear as central components of multiprotein complexes at the plasma membrane that contain additional transmembrane and cytosolic kinases required for the initiation and specificity of immune signaling. PRR complexes are under tight control by protein phosphatases, E3 ligases, and other regulatory proteins, illustrating the exquisite and complex regulation of these molecular machines whose proper activation underlines a crucial layer of plant immunity.


Science | 2013

Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex.

Yadong Sun; Lei Li; Alberto P. Macho; Zhifu Han; Zehan Hu; Cyril Zipfel; Jian-Min Zhou; Jijie Chai

First Defense In defense against bacterial infection, plants carry a cell-surface receptor, known as FLS2, that can bind to a fragment of bacterial flagellin and trigger defense responses. Y. Sun et al. (p. 624, published online 10 October) investigated the structural details that govern the binding between FLS2, its co-receptor BAK1, and the flagellin fragment flg22. The assembled complex initiates signals to activate the plants innate immune response. The molecular basis for how a plant heterodimeric receptor responds to bacterial infection signals is elucidated. Flagellin perception in Arabidopsis is through recognition of its highly conserved N-terminal epitope (flg22) by flagellin-sensitive 2 (FLS2). Flg22 binding induces FLS2 heteromerization with BRASSINOSTEROID INSENSITIVE 1–associated kinase 1 (BAK1) and their reciprocal activation followed by plant immunity. Here, we report the crystal structure of FLS2 and BAK1 ectodomains complexed with flg22 at 3.06 angstroms. A conserved and a nonconserved site from the inner surface of the FLS2 solenoid recognize the C- and N-terminal segment of flg22, respectively, without oligomerization or conformational changes in the FLS2 ectodomain. Besides directly interacting with FLS2, BAK1 acts as a co-receptor by recognizing the C terminus of the FLS2-bound flg22. Our data reveal the molecular mechanisms underlying FLS2-BAK1 complex recognition of flg22 and provide insight into the immune receptor complex activation.


Current Opinion in Microbiology | 2015

Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors

Alberto P. Macho; Cyril Zipfel

During infection, microbes are detected by surface-localized pattern recognition receptors (PRRs), leading to an innate immune response that prevents microbial ingress. Therefore, successful pathogens must evade or inhibit PRR-triggered immunity to cause disease. In the past decade, a number of type-III secretion system effector (T3Es) proteins from plant pathogenic bacteria have been shown to suppress this layer of innate immunity. More recently, the detailed mechanisms of action have been defined for several of these effectors. Interestingly, effectors display a wide array of virulence targets, being able to prevent activation of immune receptors and to hijack immune signaling pathways. Besides being a fascinating example of pathogen-host co-evolution, effectors have also emerged as valuable tools to dissect important biological processes in host cells.


eLife | 2013

The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth

Rosa Lozano-Durán; Alberto P. Macho; Freddy Boutrot; Cécile Segonzac; Imre E. Somssich; Cyril Zipfel

The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues. DOI: http://dx.doi.org/10.7554/eLife.00983.001


Science | 2014

A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

Alberto P. Macho; Benjamin Schwessinger; Vardis Ntoukakis; Alexandre Brutus; Cécile Segonzac; Sonali Roy; Yasuhiro Kadota; Man Ho Oh; Jan Sklenar; Paul Derbyshire; Rosa Lozano-Durán; Frederikke Gro Malinovsky; Jacqueline Monaghan; Frank L.H. Menke; Steven C. Huber; Sheng Yang He; Cyril Zipfel

Move and Countermove Receptors on plant cell surfaces are tuned to recognize molecular patterns associated with pathogenic bacteria. Macho et al. (p. 1509; published online 13 March) found that activation of one of these receptors in Arabidopsis results in phosphorylation of a specific tyrosine residue, which in turn triggers the plants immune response to the phytopathogen Pseudomonas syringae. P. syringae counters by secreting a specifically targeted phosphatase, thus stalling the plants immune response. A plant pathogen and its host compete for control over a key phosphorylation site in an innate immune receptor. Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell’s surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.


Plant Physiology | 2012

ASPARTATE OXIDASE Plays an Important Role in Arabidopsis Stomatal Immunity

Alberto P. Macho; Freddy Boutrot; John P. Rathjen; Cyril Zipfel

Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis.


The EMBO Journal | 2014

Negative control of BAK1 by protein phosphatase 2A during plant innate immunity

Cécile Segonzac; Alberto P. Macho; Maite Sanmartín; Vardis Ntoukakis; José J. Sánchez-Serrano; Cyril Zipfel

Recognition of pathogen‐associated molecular patterns (PAMPs) by surface‐localized pattern‐recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP‐triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co‐receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti‐bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A‐based regulation leads to increased steady‐state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface‐localized immune receptor complexes.


Molecular Plant Pathology | 2007

Competitive index in mixed infections: a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae–plant interactions

Alberto P. Macho; Adela Zumaquero; Inmaculada Ortiz-Martín; Carmen R. Beuzón

SUMMARY Mixed infections have been broadly applied to the study of bacterial pathogens in animals. However, the application of mixed infection-based methods in plant pathogens has been very limited. An important factor for this limitation is the different dynamics that mixed infections have been reported to show in the different types of models. Reports in systemic animal infections have shown that any bacterium has the same probability of multiplying within a mixed infection than in a single infection. However, in plant pathogens, bacterial growth in a mixed infection does not seem to reflect growth in a single infection, as growth interference takes place between the co-inoculated strains. Here we show that growth interference in mixed infection between different Pseudomonas syringae strains is not intrinsic to growth within a plant host, but dependent on the dose of inoculation. We also show that the minimal inoculation dose required to avoid interference depends on the aggressiveness of the pathogen as well as the type of virulence factor that differentiates the co-inoculated strains. This study establishes the basis for the use of mixed infection-based applications to the study of phytopathogenic bacteria. Analysis of the virulence of a type III effector mutant and an hrp regulatory mutant illustrate the increased accuracy and sensitivity of competitive index assays vs. regular growth assays. Several applications of this assay are addressed, and potential implications for this and other mixed infection-based methods are discussed.


Molecular Plant-microbe Interactions | 2010

Negative regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola.

Inmaculada Ortiz-Martín; Richard Thwaites; Alberto P. Macho; John W. Mansfield; Carmen R. Beuzón

Many plant-pathogenic bacteria require type III secretion systems (T3SS) to cause disease in compatible hosts and to induce the hypersensitive response in resistant plants. T3SS gene expression is induced within the plant and responds to host and environmental factors. In Pseudomonas syringae, expression is downregulated by the Lon protease in rich medium and by HrpV under inducing conditions. HrpV acts as an anti-activator by binding HrpS. HrpG, which can also bind HrpV, has been reported to act as an anti-anti-activator. Previous studies have used mostly in vitro inducing conditions, different pathovars, and methodology. We have used single and double lon and hrpV mutants of P. syringae pv. phaseolicola 1448a, as well as strains ectopically expressing the regulators, to examine their role in coordinating expression of the T3SS. We applied real-time polymerase chain reaction to analyze gene expression both in vitro and in planta, and assessed bacterial fitness using competitive indices. Our results indicate that i) Lon downregulates expression of the hrp/hrc genes in all conditions, probably by constitutively degrading naturally unstable HrpR; ii) HrpV and HrpT downregulate expression of the hrp/hrc genes in all conditions; and iii) HrpG has an additional, HrpV-independent role, regulating expression of the hrpC operon.


Molecular Plant-microbe Interactions | 2010

A Competitive Index Assay Identifies Several Ralstonia solanacearum Type III Effector Mutant Strains with Reduced Fitness in Host Plants

Alberto P. Macho; Alice Guidot; Patrick Barberis; Carmen R. Beuzón; Stéphane Genin

Ralstonia solanacearum, the causal agent of bacterial wilt, is a soil bacterium which can naturally infect a wide range of host plants through the root system. Pathogenicity relies on a type III secretion system which delivers a large set of approximately 75 type III effectors (T3E) into plant cells. On several plants, pathogenicity assays based on quantification of wilting symptoms failed to detect a significant contribution of R. solanacearum T3E in this process, thus revealing the collective effect of T3E in pathogenesis. We developed a mixed infection-based method with R. solanacearum to monitor bacterial fitness in plant leaf tissues as a virulence assay. This accurate and sensitive assay provides evidence that growth defects can be detected for T3E mutants: we identified 12 genes contributing to bacterial fitness in eggplant leaves and 3 of them were also implicated in bacterial fitness on two other hosts, tomato and bean. Contribution to fitness of several T3E appears to be host specific, and we show that some known avirulence determinants such as popP2 or avrA do provide competitive advantages on some susceptible host plants. In addition, this assay revealed that the efe gene, which directs the production of ethylene by bacteria in plant tissues, and hdfB, involved in the biosynthesis of the secondary metabolite 3-hydroxy-oxindole, are also required for optimal growth in plant leaf tissues.

Collaboration


Dive into the Alberto P. Macho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosa Lozano-Durán

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuying Sang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge