Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa Lozano-Durán is active.

Publication


Featured researches published by Rosa Lozano-Durán.


eLife | 2013

The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth

Rosa Lozano-Durán; Alberto P. Macho; Freddy Boutrot; Cécile Segonzac; Imre E. Somssich; Cyril Zipfel

The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues. DOI: http://dx.doi.org/10.7554/eLife.00983.001


The Plant Cell | 2011

Geminiviruses Subvert Ubiquitination by Altering CSN-Mediated Derubylation of SCF E3 Ligase Complexes and Inhibit Jasmonate Signaling in Arabidopsis thaliana

Rosa Lozano-Durán; Tábata Rosas-Díaz; Giuliana Gusmaroli; Ana Lucia Luna; Ludivine Taconnat; Xing Wang Deng; Eduardo R. Bejarano

This study shows that geminivirus C2/L2 protein interferes with the derubylation of CUL1. Responses regulated by the CUL1-based SCF ubiquitin ligases, and particularly the response to jasmonates, are altered in transgenic Arabidopsis thaliana expressing C2/L2. The capability to selectively interfere with SCF complexes may define a novel and powerful strategy in viral infections. Viruses must create a suitable cell environment and elude defense mechanisms, which likely involves interactions with host proteins and subsequent interference with or usurpation of cellular machinery. Here, we describe a novel strategy used by plant DNA viruses (Geminiviruses) to redirect ubiquitination by interfering with the activity of the CSN (COP9 signalosome) complex. We show that geminiviral C2 protein interacts with CSN5, and its expression in transgenic plants compromises CSN activity on CUL1. Several responses regulated by the CUL1-based SCF ubiquitin E3 ligases (including responses to jasmonates, auxins, gibberellins, ethylene, and abscisic acid) are altered in these plants. Impairment of SCF function is confirmed by stabilization of yellow fluorescent protein–GAI, a substrate of the SCFSLY1. Transcriptomic analysis of these transgenic plants highlights the response to jasmonates as the main SCF-dependent process affected by C2. Exogenous jasmonate treatment of Arabidopsis thaliana plants disrupts geminivirus infection, suggesting that the suppression of the jasmonate response might be crucial for infection. Our findings suggest that C2 affects the activity of SCFs, most likely through interference with the CSN. As SCFs are key regulators of many cellular processes, the capability of viruses to selectively interfere with or hijack the activity of these complexes might define a novel and powerful strategy in viral infections.


Trends in Plant Science | 2015

Trade-off between growth and immunity: role of brassinosteroids

Rosa Lozano-Durán; Cyril Zipfel

A balance between growth and immunity exists in plants. Recently, the growth-promoting hormones brassinosteroids (BR) have emerged as crucial regulators of the growth-immunity trade-off, although the molecular mechanisms underlying this role remained unclear. New evidence obtained from the model plant Arabidopsis thaliana points at an indirect crosstalk between BR signaling and immunity, mediated by the transcription factors BZR1 and HBI1, which suppress immunity upon BR perception. The core transcriptional cascade formed by BZR1 and HBI1 seems to act as a regulatory hub on which multiple signaling inputs impinge, ensuring effective fine-tuning of the trade-off between growth and immunity in a timely and cost-efficient manner.


Science | 2014

A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

Alberto P. Macho; Benjamin Schwessinger; Vardis Ntoukakis; Alexandre Brutus; Cécile Segonzac; Sonali Roy; Yasuhiro Kadota; Man Ho Oh; Jan Sklenar; Paul Derbyshire; Rosa Lozano-Durán; Frederikke Gro Malinovsky; Jacqueline Monaghan; Frank L.H. Menke; Steven C. Huber; Sheng Yang He; Cyril Zipfel

Move and Countermove Receptors on plant cell surfaces are tuned to recognize molecular patterns associated with pathogenic bacteria. Macho et al. (p. 1509; published online 13 March) found that activation of one of these receptors in Arabidopsis results in phosphorylation of a specific tyrosine residue, which in turn triggers the plants immune response to the phytopathogen Pseudomonas syringae. P. syringae counters by secreting a specifically targeted phosphatase, thus stalling the plants immune response. A plant pathogen and its host compete for control over a key phosphorylation site in an innate immune receptor. Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell’s surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.


New Phytologist | 2013

Geminivirus Rep Protein Interferes with the Plant DNA Methylation Machinery and Suppresses Transcriptional Gene Silencing

Edgar Rodríguez-Negrete; Rosa Lozano-Durán; Alvaro Piedra-Aguilera; Lucía Cruzado; Eduardo R. Bejarano; Araceli G. Castillo

Cytosine methylation is an epigenetic mark that promotes gene silencing and plays an important role in genome defence against transposons and invading DNA viruses. Previous data showed that the largest family of single-stranded DNA viruses, Geminiviridae, prevents methylation-mediated transcriptional gene silencing (TGS) by interfering with the proper functioning of the plant methylation cycle. Here, we describe a novel counter-defence strategy used by geminiviruses, which reduces the expression of the plant maintenance DNA methyltransferases, METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3), in both locally and systemically infected tissues. We demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widespread among geminivirus species. Additionally, we identified Rep (Replication associated protein) as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 down-regulation. The presence of Rep suppressed TGS of an Arabidopsis thaliana transgene and of host loci whose expression was strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for replication, displays TGS suppressor activity through a mechanism distinct from that thus far described for geminiviruses.


Plant Physiology | 2012

Plasma Membrane Calcium ATPases Are Important Components of Receptor-Mediated Signaling in Plant Immune Responses and Development

Nicolas Frei dit Frey; Malick Mbengue; Mark Kwaaitaal; Lisette Nitsch; Denise Altenbach; Heidrun Häweker; Rosa Lozano-Durán; Maria Fransiska Njo; Tom Beeckman; Bruno Huettel; Jan Willem Borst; Ralph Panstruga; Silke Robatzek

Plasma membrane-resident receptor kinases (RKs) initiate signaling pathways important for plant immunity and development. In Arabidopsis (Arabidopsis thaliana), the receptor for the elicitor-active peptide epitope of bacterial flagellin, flg22, is encoded by FLAGELLIN SENSING2 (FLS2), which promotes plant immunity. Despite its relevance, the molecular components regulating FLS2-mediated signaling remain largely unknown. We show that plasma membrane ARABIDOPSIS-AUTOINHIBITED Ca2+-ATPase (ACA8) forms a complex with FLS2 in planta. ACA8 and its closest homolog ACA10 are required for limiting the growth of virulent bacteria. One of the earliest flg22 responses is the transient increase of cytosolic Ca2+ ions, which is crucial for many of the well-described downstream responses (e.g. generation of reactive oxygen species and the transcriptional activation of defense-associated genes). Mutant aca8 aca10 plants show decreased flg22-induced Ca2+ and reactive oxygen species bursts and exhibit altered transcriptional reprogramming. In particular, mitogen-activated protein kinase-dependent flg22-induced gene expression is elevated, whereas calcium-dependent protein kinase-dependent flg22-induced gene expression is reduced. These results demonstrate that the fine regulation of Ca2+ fluxes across the plasma membrane is critical for the coordination of the downstream microbe-associated molecular pattern responses and suggest a mechanistic link between the FLS2 receptor complex and signaling kinases via the secondary messenger Ca2+. ACA8 also interacts with other RKs such as BRI1 and CLV1 known to regulate plant development, and both aca8 and aca10 mutants show morphological phenotypes, suggesting additional roles for ACA8 and ACA10 in developmental processes. Thus, Ca2+ ATPases appear to represent general regulatory components of RK-mediated signaling pathways.


PLOS ONE | 2011

Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach

Rosa Lozano-Durán; Tábata Rosas-Díaz; Ana P. Luna; Eduardo R. Bejarano

Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies.


Molecular Plant-microbe Interactions | 2015

14-3-3 proteins in plant-pathogen interactions.

Rosa Lozano-Durán; Silke Robatzek

14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.


Viruses | 2013

Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing

Henryk Czosnek; Assaf Eybishtz; Dagan Sade; Rena Gorovits; Iris Sobol; Eduardo R. Bejarano; Tábata Rosas-Díaz; Rosa Lozano-Durán

The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular mechanisms underlying plant infection and resistance to infection by begomoviruses.


Trends in Plant Science | 2015

Importance of tyrosine phosphorylation in receptor kinase complexes.

Alberto P. Macho; Rosa Lozano-Durán; Cyril Zipfel

Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants.

Collaboration


Dive into the Rosa Lozano-Durán's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto P. Macho

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liping Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xue Ding

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge