Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Pérez is active.

Publication


Featured researches published by Alberto Pérez.


Nucleic Acids Research | 2010

A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA

Richard Lavery; Krystyna Zakrzewska; David L. Beveridge; Thomas C. Bishop; David A. Case; Thomas E. Cheatham; Surjit B. Dixit; B. Jayaram; Filip Lankaš; Charles A. Laughton; John H. Maddocks; Alexis Michon; Roman Osman; Modesto Orozco; Alberto Pérez; Tanya Singh; Nada Spackova; Jiri Sponer

It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein–DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50–100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA.


Accounts of Chemical Research | 2012

Frontiers in Molecular Dynamics Simulations of DNA

Alberto Pérez; F. Javier Luque; Modesto Orozco

It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNAs flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global thermodynamic and kinetic picture of the binding landscape of DNA will become available in a few years. MD will become a crucial tool in areas such as biomolecular engineering and synthetic biology. MD has also been shown to be an excellent source of parameters for mesoscopic models of DNA flexibility. Such models can be refined through atomistic MD simulations on small duplexes and then applied to the study of entire chromosomes. Recent evidence suggests that MD-derived elastic models can successfully predict the position of regulatory regions in DNA and can help advance our understanding of nucleosome positioning and chromatin plasticity. If these results are confirmed, MD simulations can become the ultimate tool to decipher a physical code that can contribute to gene regulation. We are entering the golden age of MD simulations of DNA. Undoubtedly, the expectations are high, but the challenges are also enormous. These include the need for more accurate potential energy functionals and for longer and more complex simulations in more realistic systems. The joint research effort of several groups will be crucial for adapting the technique to the requirements of the coming decade.


Nature Methods | 2016

PARMBSC1: A refined force-field for DNA simulations

Ivan Ivani; Pablo D. Dans; Agnes Noy; Alberto Pérez; Ignacio Faustino; Jürgen Walther; Pau Andrio; Ramon Goni; Alexandra Balaceanu; Guillem Portella; Federica Battistini; Josep Lluís Gelpí; Carlos González; Michele Vendruscolo; Charles A. Laughton; Sarah A. Harris; David A. Case; Modesto Orozco

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.


Chemical Society Reviews | 2003

Theoretical methods for the simulation of nucleic acids

Modesto Orozco; Alberto Pérez; Agnes Noy; F. Javier Luque

Different theoretical methods for the description of nucleic acid structures are reviewed. Firstly, we introduce the concept of classical force-field in the context of nucleic acid structures, discussing their accuracy. We then examine theoretical approaches to the description of nucleic acids based on: i) a rigid or quasi-rigid description of the molecule, ii) molecular mechanics optimization, and iii) molecular dynamics. Special emphasis is made ion current state of the art molecular dynamics simulations of nucleic acids structures.


Nucleic Acids Research | 2008

Towards a molecular dynamics consensus view of B-DNA flexibility

Alberto Pérez; Filip Lankaš; F. Javier Luque; Modesto Orozco

We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.


Current Opinion in Structural Biology | 2008

Recent advances in the study of nucleic acid flexibility by molecular dynamics

Modesto Orozco; Agnes Noy; Alberto Pérez

The recent use of molecular dynamics (MD) simulations to study flexibility of nucleic acids has been reviewed from an analysis of the publications appearing in the past two years (from 2005 till date). Despite the existence of some unsolved problems in the methodologies, these years have been witness to major advances in the field. Based on a critical review of the most recent contributions, excitement exists on the expected evolution of the field in the next years.


Genome Biology | 2007

Determining promoter location based on DNA structure first-principles calculations

J. Ramon Goñi; Alberto Pérez; David Torrents; Modesto Orozco

A new method for the prediction of promoter regions based on atomic molecular dynamics simulations of small oligonucleotides has been developed. The method works independently of gene structure conservation and orthology and of the presence of detectable sequence features. Results obtained with our method confirm the existence of a hidden physical code that modulates genome expression.


Nucleic Acids Research | 2014

μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA.

Marco Pasi; John H. Maddocks; David L. Beveridge; Thomas C. Bishop; David A. Case; Thomas E. Cheatham; Pablo D. Dans; B. Jayaram; Filip Lankaš; Charles A. Laughton; Jonathan S. Mitchell; Roman Osman; Modesto Orozco; Alberto Pérez; Daiva Petkevičiūtė; Nada Spackova; Jiri Sponer; Krystyna Zakrzewska; Richard Lavery

We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that base sequence effects depend strongly not only on the specific base pair step, but also on the specific base pairs that flank each step. Beyond sequence effects on average helical parameters and conformational fluctuations, we also identify tetranucleotide sequences that oscillate between several distinct conformational substates. By analyzing the conformation of the phosphodiester backbones, it is possible to understand for which sequences these substates will arise, and what impact they will have on specific helical parameters.


Nucleic Acids Research | 2007

Theoretical study of large conformational transitions in DNA: the B↔A conformational change in water and ethanol/water

Agnes Noy; Alberto Pérez; Charles A. Laughton; Modesto Orozco

We explore here the possibility of determining theoretically the free energy change associated with large conformational transitions in DNA, like the solvent-induced B⇔A conformational change. We find that a combination of targeted molecular dynamics (tMD) and the weighted histogram analysis method (WHAM) can be used to trace this transition in both water and ethanol/water mixture. The pathway of the transition in the A→B direction mirrors the B→A pathway, and is dominated by two processes that occur somewhat independently: local changes in sugar puckering and global rearrangements (particularly twist and roll) in the structure. The B→A transition is found to be a quasi-harmonic process, which follows closely the first spontaneous deformation mode of B-DNA, showing that a physiologically-relevant deformation is in coded in the flexibility pattern of DNA.


Journal of Chemical Theory and Computation | 2005

Exploring the Essential Dynamics of B-DNA

Alberto Pérez; José Ramón Blas; Manuel Rueda; J. M. López-Bes; Xavier de la Cruz,†,‖ and; Modesto Orozco

The essential dynamics of different normal and chemically modified DNA duplexes pertaining to the B family have been extensively explored from molecular dynamics simulations using powerful data mining techniques. Some of them, which are presented here for the first time, might become standard, powerful tools to characterize the dynamical behavior of complex biomolecular structures such as nucleic acids. Their potential impact is illustrated by examining the extended trajectories sampled for the set of DNA duplexes considered in this study, which allows us to discuss the degree of conservation of the natural flexibility pattern of the different DNAs, which in specific cases contain severe chemical modifications.

Collaboration


Dive into the Alberto Pérez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken A. Dill

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Filip Lankaš

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiri Sponer

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge