Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Javier Luque is active.

Publication


Featured researches published by F. Javier Luque.


Theoretical Chemistry Accounts | 2000

Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”

F. Javier Luque; Josep Maria López; Modesto Orozco

This paper provides an overview of the title paper by Miertus, Scrocco and Tomasi, including the impact that it has had on the theoretical description of solvation by means of continuum models.


Accounts of Chemical Research | 2012

Frontiers in Molecular Dynamics Simulations of DNA

Alberto Pérez; F. Javier Luque; Modesto Orozco

It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNAs flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global thermodynamic and kinetic picture of the binding landscape of DNA will become available in a few years. MD will become a crucial tool in areas such as biomolecular engineering and synthetic biology. MD has also been shown to be an excellent source of parameters for mesoscopic models of DNA flexibility. Such models can be refined through atomistic MD simulations on small duplexes and then applied to the study of entire chromosomes. Recent evidence suggests that MD-derived elastic models can successfully predict the position of regulatory regions in DNA and can help advance our understanding of nucleosome positioning and chromatin plasticity. If these results are confirmed, MD simulations can become the ultimate tool to decipher a physical code that can contribute to gene regulation. We are entering the golden age of MD simulations of DNA. Undoubtedly, the expectations are high, but the challenges are also enormous. These include the need for more accurate potential energy functionals and for longer and more complex simulations in more realistic systems. The joint research effort of several groups will be crucial for adapting the technique to the requirements of the coming decade.


Journal of Medicinal Chemistry | 2009

Binding Site Detection and Druggability Index from First Principles

Jesus Seco; F. Javier Luque; Xavier Barril

In drug discovery, it is essential to identify binding sites on protein surfaces that drug-like molecules could exploit to exert a biological effect. Both X-ray crystallography and NMR experiments have demonstrated that organic solvents bind precisely at these locations. We show that this effect is reproduced using molecular dynamics with a binary solvent. Furthermore, analysis of the simulations give direct access to interaction free energies between the protein and small organic molecules, which can be used to detect binding sites and to predict the maximal affinity that a drug-like molecule could attain for them. On a set of pharmacologically relevant proteins, we obtain good predictions for druggable sites as well as for protein-protein and low affinity binding sites. This is the first druggability index not based on surface descriptors and, being independent of a training set, is particularly indicated to study unconventional targets such as protein-protein interactions or allosteric binding sites.


Journal of Medicinal Chemistry | 2011

Synthesis, Biological Evaluation, and Molecular Modeling of Donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine Hybrids as New Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Treatment of Alzheimer’s Disease

Irene Bolea; Jordi Juárez-Jiménez; Cristóbal de los Ríos; Mourad Chioua; Ramon Pouplana; F. Javier Luque; Mercedes Unzeta; José Marco-Contelles; Abdelouahid Samadi

A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel compounds (3-9) have been designed using a conjunctive approach that combines the benzylpiperidine moiety of the AChE inhibitor donepezil (1) and the indolyl propargylamino moiety of the MAO inhibitor N-[(5-benzyloxy-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine (2), connected through an oligomethylene linker. The most promising hybrid (5) is a potent inhibitor of both MAO-A (IC50=5.2±1.1 nM) and MAO-B (IC50=43±8.0 nM) and is a moderately potent inhibitor of AChE (IC50=0.35±0.01 μM) and BuChE (IC50=0.46±0.06 μM). Moreover, molecular modeling and kinetic studies support the dual binding site to AChE, which explains the inhibitory effect exerted on Aβ aggregation. Overall, the results suggest that the new compounds are promising multitarget drug candidates with potential impact for Alzheimers disease therapy.


Bioinformatics | 2011

MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories

Peter Schmidtke; Axel Bidon-Chanal; F. Javier Luque; Xavier Barril

MOTIVATION A variety of pocket detection algorithms are now freely or commercially available to the scientific community for the analysis of static protein structures. However, since proteins are dynamic entities, enhancing the capabilities of these programs for the straightforward detection and characterization of cavities taking into account protein conformational ensembles should be valuable for capturing the plasticity of pockets, and therefore allow gaining insight into structure-function relationships. RESULTS This article describes a new method, called MDpocket, providing a fast, free and open-source tool for tracking small molecule binding sites and gas migration pathways on molecular dynamics (MDs) trajectories or other conformational ensembles. MDpocket is based on the fpocket cavity detection algorithm and a valuable contribution to existing analysis tools. The capabilities of MDpocket are illustrated for three relevant cases: (i) the detection of transient subpockets using an ensemble of crystal structures of HSP90; (ii) the detection of known xenon binding sites and migration pathways in myoglobin; and (iii) the identification of suitable pockets for molecular docking in P38 Map kinase. AVAILABILITY MDpocket is free and open-source software and can be downloaded at http://fpocket.sourceforge.net. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Journal of Medicinal Chemistry | 2009

Pyrano(3,2-c)quinoline-6-Chlorotacrine Hybrids as a Novel Family of Acetylcholinesterase- and β-Amyloid-Directed Anti-Alzheimer Compounds

Pelayo Camps; Xavier Formosa; Carles Galdeano; Diego Muñoz-Torrero; Lorena Ramírez; Elena Gómez; Nicolas Isambert; Rodolfo Lavilla; Albert Badia; M. Victòria Clos; Manuela Bartolini; Francesca Mancini; Vincenza Andrisano; Mariana P. Arce; M. Isabel Rodríguez-Franco; Oscar Huertas; Thomai Dafni; F. Javier Luque

Two isomeric series of dual binding site acetylcholinesterase (AChE) inhibitors have been designed, synthesized, and tested for their ability to inhibit AChE, butyrylcholinesterase, AChE-induced and self-induced beta-amyloid (Abeta) aggregation, and beta-secretase (BACE-1) and to cross blood-brain barrier. The new hybrids consist of a unit of 6-chlorotacrine and a multicomponent reaction-derived pyrano[3,2-c]quinoline scaffold as the active-site and peripheral-site interacting moieties, respectively, connected through an oligomethylene linker containing an amido group at variable position. Indeed, molecular modeling and kinetic studies have confirmed the dual site binding of these compounds. The new hybrids, and particularly 27, retain the potent and selective human AChE inhibitory activity of the parent 6-chlorotacrine while exhibiting a significant in vitro inhibitory activity toward the AChE-induced and self-induced Abeta aggregation and toward BACE-1, as well as ability to enter the central nervous system, which makes them promising anti-Alzheimer lead compounds.


Chemical Society Reviews | 2003

Theoretical methods for the simulation of nucleic acids

Modesto Orozco; Alberto Pérez; Agnes Noy; F. Javier Luque

Different theoretical methods for the description of nucleic acid structures are reviewed. Firstly, we introduce the concept of classical force-field in the context of nucleic acid structures, discussing their accuracy. We then examine theoretical approaches to the description of nucleic acids based on: i) a rigid or quasi-rigid description of the molecule, ii) molecular mechanics optimization, and iii) molecular dynamics. Special emphasis is made ion current state of the art molecular dynamics simulations of nucleic acids structures.


Nucleic Acids Research | 2008

Towards a molecular dynamics consensus view of B-DNA flexibility

Alberto Pérez; Filip Lankaš; F. Javier Luque; Modesto Orozco

We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.


Journal of the American Chemical Society | 2011

Shielded Hydrogen Bonds as Structural Determinants of Binding Kinetics: Application in Drug Design

Peter Schmidtke; F. Javier Luque; James B. Murray; Xavier Barril

Time scale control of molecular interactions is an essential part of biochemical systems, but very little is known about the structural factors governing the kinetics of molecular recognition. In drug design, the lifetime of drug-target complexes is a major determinant of pharmacological effects but the absence of structure-kinetic relationships precludes rational optimization of this property. Here we show that almost buried polar atoms--a common feature on protein binding sites--tend to form hydrogen bonds that are shielded from water. Formation and rupture of this type of hydrogen bonds involves an energetically penalized transition state because it occurs asynchronously with dehydration/rehydration. In consequence, water-shielded hydrogen bonds are exchanged at slower rates. Occurrence of this phenomenon can be anticipated from simple structural analysis, affording a novel tool to interpret and predict structure-kinetics relationships. The validity of this principle has been investigated on two pairs of Hsp90 inhibitors for which detailed thermodynamic and kinetic data has been experimentally determined. The agreement between macroscopic observables and molecular simulations confirms the role of water-shielded hydrogen bonds as kinetic traps and illustrates how our finding could be used as an aid in structure-based drug discovery.


Journal of Medicinal Chemistry | 2009

Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer's disease.

José Marco-Contelles; Rafael León; Cristóbal de los Ríos; Abdelouahid Samadi; Manuela Bartolini; Vincenza Andrisano; Oscar Huertas; Xavier Barril; F. Javier Luque; María Isabel Rodríguez-Franco; Beatriz López; Manuela G. López; Antonio G. García; Maria do Carmo Carreiras; Mercedes Villarroya

Tacripyrines (1-14) have been designed by combining an AChE inhibitor (tacrine) with a calcium antagonist such as nimodipine and are targeted to develop a multitarget therapeutic strategy to confront AD. Tacripyrines are selective and potent AChE inhibitors in the nanomolar range. The mixed type inhibition of hAChE activity of compound 11 (IC(50) 105 +/- 15 nM) is associated to a 30.7 +/- 8.6% inhibition of the proaggregating action of AChE on the Abeta and a moderate inhibition of Abeta self-aggregation (34.9 +/- 5.4%). Molecular modeling indicates that binding of compound 11 to the AChE PAS mainly involves the (R)-11 enantiomer, which also agrees with the noncompetitive inhibition mechanism exhibited by p-methoxytacripyrine 11. Tacripyrines are neuroprotective agents, show moderate Ca(2+) channel blocking effect, and cross the blood-brain barrier, emerging as lead candidates for treating AD.

Collaboration


Dive into the F. Javier Luque's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Cubero

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marcelo A. Martí

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Researchain Logo
Decentralizing Knowledge