Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Testolin is active.

Publication


Featured researches published by Alberto Testolin.


Frontiers in Psychology | 2013

Modeling language and cognition with deep unsupervised learning: a tutorial overview

Marco Zorzi; Alberto Testolin; Ivilin Stoianov

Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.


IEEE Access | 2015

Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

Michele Zorzi; Andrea Zanella; Alberto Testolin; Michele De Filippo De Grazia; Marco Zorzi

In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication networks.


annual mediterranean ad hoc networking workshop | 2014

A machine learning approach to QoE-based video admission control and resource allocation in wireless systems

Alberto Testolin; Marco Zanforlin; Michele De Filippo De Grazia; Daniele Munaretto; Andrea Zanella; Marco Zorzi; Michele Zorzi

The rapid growth of video traffic in cellular networks is a crucial issue to be addressed by mobile operators. An emerging and promising trend in this regard is the development of solutions that aim at maximizing the Quality of Experience (QoE) of the end users. However, predicting the QoE perceived by the users in different conditions remains a major challenge. In this paper, we propose a machine learning approach to support QoE-based Video Admission Control (VAC) and Resource Management (RM) algorithms. More specifically, we develop a learning system that can automatically extract the quality-rate characteristics of unknown video sequences from the size of H.264-encoded video frames. Our approach combines unsupervised feature learning with supervised classification techniques, thereby providing an efficient and scalable way to estimate the QoE parameters that characterize each video. This QoE characterization is then used to manage simultaneous video transmissions through a shared channel in order to guarantee a minimum quality level to the final users. Simulation results show that the proposed learning-based QoE classification of video sequences outperforms commonly deployed off-line video analysis techniques and that the QoE-based VAC and RM algorithms outperform standard content-agnostic strategies.


Frontiers in Psychology | 2013

Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

Alberto Testolin; Ivilin Stoianov; Michele De Filippo De Grazia; Marco Zorzi

Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.


Frontiers in Computational Neuroscience | 2016

Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions.

Alberto Testolin; Marco Zorzi

Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.


Cognitive Science | 2016

Learning Orthographic Structure With Sequential Generative Neural Networks

Alberto Testolin; Ivilin Stoianov; Alessandro Sperduti; Marco Zorzi

Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain.


Neurocomputing | 2015

Neural Networks for Sequential Data: a Pre‐training Approach based on Hidden Markov Models

Luca Pasa; Alberto Testolin; Alessandro Sperduti

Abstract In the last few years, research highlighted the critical role of unsupervised pre-training strategies to improve the performance of artificial neural networks. However, the scope of existing pre-training methods is limited to static data, whereas many learning tasks require to deal with temporal information. We propose a novel approach to pre-training sequential neural networks that exploits a simpler, first-order Hidden Markov Model to generate an approximate distribution of the original dataset. The learned distribution is used to generate a smoothed dataset that is used for pre-training. In this way, it is possible to drive the connection weights in a better region of the parameter space, where subsequent fine-tuning on the original dataset can be more effective. This novel pre-training approach is model-independent and can be readily applied to different network architectures. The benefits of the proposed method, both in terms of accuracy and training times, are demonstrated on a prediction task using four datasets of polyphonic music. The flexibility of the proposed strategy is shown by applying it to two different recurrent neural network architectures, and we also empirically investigate the impact of different hyperparameters on the performance of the proposed pre-training strategy.


Nature Human Behaviour | 2017

Letter perception emerges from unsupervised deep learning and recycling of natural image features

Alberto Testolin; Ivilin Stoianov; Marco Zorzi

The use of written symbols is a major achievement of human cultural evolution. However, how abstract letter representations might be learned from vision is still an unsolved problem1,2. Here, we present a large-scale computational model of letter recognition based on deep neural networks3,4, which develops a hierarchy of increasingly more complex internal representations in a completely unsupervised way by fitting a probabilistic, generative model to the visual input5,6. In line with the hypothesis that learning written symbols partially recycles pre-existing neuronal circuits for object recognition7, earlier processing levels in the model exploit domain-general visual features learned from natural images, while domain-specific features emerge in upstream neurons following exposure to printed letters. We show that these high-level representations can be easily mapped to letter identities even for noise-degraded images, producing accurate simulations of a broad range of empirical findings on letter perception in human observers. Our model shows that by reusing natural visual primitives, learning written symbols only requires limited, domain-specific tuning, supporting the hypothesis that their shape has been culturally selected to match the statistical structure of natural environments8.Testolin et al. develop a computational model of letter perception based on deep learning and show that domain-general visual knowledge extracted from natural scenes is recycled for learning domain-specific cultural artefacts, such as printed letters.


Frontiers in Computational Neuroscience | 2017

The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding

Alberto Testolin; Michele De Filippo De Grazia; Marco Zorzi

The recent “deep learning revolution” in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.


Cognitive Processing | 2017

Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning

Zahra Sadeghi; Alberto Testolin

In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

Collaboration


Dive into the Alberto Testolin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivilin Stoianov

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge