Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Viglione is active.

Publication


Featured researches published by Alberto Viglione.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

Panta Rhei-Everything Flows: Change in hydrology and society-The IAHS Scientific Decade 2013-2022

Alberto Montanari; G. Young; Hubert H. G. Savenije; Denis A. Hughes; Thorsten Wagener; L. Ren; Demetris Koutsoyiannis; Christophe Cudennec; Elena Toth; Salvatore Grimaldi; Günter Blöschl; Murugesu Sivapalan; Keith Beven; Hoshin V. Gupta; Matthew R. Hipsey; Bettina Schaefli; Berit Arheimer; Eva Boegh; Stanislaus J. Schymanski; G. Di Baldassarre; Bofu Yu; Pierre Hubert; Y. Huang; Andreas Schumann; D.A. Post; V. Srinivasan; Ciaran J. Harman; Sally E. Thompson; M. Rogger; Alberto Viglione

Abstract The new Scientific Decade 2013–2022 of IAHS, entitled “Panta Rhei—Everything Flows”, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013–2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes. Editor Z.W. Kundzewicz Citation Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V., 2013. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal. 58 (6) 1256–1275.


Archive | 2013

Runoff prediction in ungauged basins : synthesis across processes, places and scales

Günter Blöschl; Murugesu Sivapalan; Thorsten Wagener; Alberto Viglione; Hubert H. G. Savenije

List of contributors Foreword Thomas Dunne Preface Gunter Bloschl, Murugesu Sivapalan, Thorsten Wagener, Alberto Viglione and Hubert Savenije 1. Introduction Gunter Bloschl, Murugesu Sivapalan, Thorsten Wagener, Alberto Viglione and Hubert Savenije 2. A synthesis framework for runoff predictions in ungauged basins Thorsten Wagener, Gunter Bloschl, David Goodrich, Hoshin V. Gupta, Murugesu Sivapalan, Yasuto Tachikawa, Peter Troch and Markus Weiler 3. A data acquisition framework for predictions of runoff in ungauged basins Brian McGlynn, Gunter Bloschl, Marco Borga, Helge Bormann, Ruud Hurkmans, Jurgen Komma, Lakshman Nandagiri, Remko Uijlenhoet and Thorsten Wagener 4. Process realism: flow paths and storage Dorthe Tetzlaff, Ghazi Al-Rawas, Gunter Bloschl, Sean K. Carey, Ying Fan, Markus Hrachowitz, Robert Kirnbauer, Graham Jewitt, Hjalmar Laudon, Kevin J. McGuire, Takahiro Sayama, Chris Soulsby, Erwin Zehe and Thorsten Wagener 5. Prediction of annual runoff in ungauged basins Thomas McMahon, Gregor Laaha, Juraj Parajka, Murray C. Peel, Hubert Savenije, Murugesu Sivapalan, Jan Szolgay, Sally Thompson, Alberto Viglione, Ross Woods and Dawen Yang 6. Prediction of seasonal runoff in ungauged basins R. Weingartner, Gunter Bloschl, David Hannah, Danny Marks, Juraj Parajka, Charles Pearson, Magdalena Rogger, Jose Luis. Salinas, Eric Sauquet, Sri Srikanthan, Sally Thompson and Alberto Viglione 7. Prediction of flow duration curves in ungauged basins Attilio Castellarin, Gianluca Botter, Denis A. Hughes, Suxia Liu, Taha B. M. J. Ouarda, Juraj Parajka, David Post, Murugesu Sivapalan, Christopher Spence, Alberto Viglione and Richard Vogel 8. Prediction of low flows in ungauged basins Gregor Laaha, Siegfried Demuth, Hege Hisdal, Charles N. Kroll, Henny A. J. van Lanen, Thomas Nester, Magdalena Rogger, Eric Sauquet, Lena M. Tallaksen, Ross Woods and Andy Young 9. Prediction of floods in ungauged basins Dan Rosbjerg, Gunter Bloschl, Donald H. Burn, Attilio Castellarin, Barry Croke, Guliano Di Baldassarre, Vito Iacobellis, Thomas Kjeldsen, George Kuczera, Ralf Merz, Alberto Montanari, David Morris, Taha B. M. J. Ouarda, Liliang Ren, Magdalena Rogger, Jose Luis Salinas, Elena Toth and Alberto Viglione 10. Predictions of runoff hydrographs in ungauged basins Juraj Parajka, Vazken Andreassian, Stacey Archfield, Andras Bardossy, Francis Chiew, Qingyun Duan, Alexander Gelfan, Kamila Hlavcova, Ralf Merz, Neil McIntyre, Ludovic Oudin, Charles Perrin, Magdalena Rogger, Jose Luis Salinas, Hubert Savenije, Jon Olav Skoien, Thorsten Wagener, Erwin Zehe and Yongqiang Zhang 11. Case studies Hubert Savenije, Murugesu Sivapalan, Trent Biggs, Shaofeng Jia, Leonid M. Korytny, E.A.Ilyichyova, Boris Gartsman, John W. Pomeroy, Kevin Shook, Xing Fang, Tom Brown, Denis A. Hughes, Stacey Archfield, Jos Samuel, Paulin Coulibaly, Robert A. Metcalfe, Attilio Castellarin, Ralf Merz, Gunter Humer, Ataur Rahman, Khaled Haddad, Erwin Weinmann, George Kuczera, Theresa Blume, Armand Crabit, Francois Colin, Roger Moussa, Hessel Winsemius, Hubert Savenije, Jens Liebe, Nick van de Giesen, M. Todd Walter, Tammo S. Steenhuis, Jeffrey R. Kennedy, David Goodrich, Carl L. Unkrich, Dominic Mazvimavi, Neil R. Viney, Kuniyoshi Takeuchi, H. A. P. Hapuarachchi, Anthony S. Kiem, Hiroshi Ishidaira, Tianqi Ao, Jun Magome, Maichun C. Zhou, Mikhail Georgievski, Guoqiang Wang, Chihiro Yoshimura, Berit Arheimer, Goran Lindstrom and Shijun Lin 12. Synthesis across processes, places and scales Hoshin V. Gupta, Gunter Bloschl, Jeffrey McDonnell, Hubert Savenije, Murugesu Sivapalan, Alberto Viglione and Thorsten Wagener 13. Recommendations Kuniyoshi Takeuchi, Gunter. Bloschl, Hubert Savenije, John Schaake, Murugesu Sivapalan, Alberto Viglione, Thorsten Wagener and Gordon Young Appendix: summary of studies used in the comparative assessments References Index.This book is devoted to predicting runoff in ungauged basins (PUB), i.e., predicting runoff at those locations where no runoff data are available. It aims at a synthesis of research on predictions of runoff in ungauged basins across processes, places and scales as a response to the dilemma of fragmentation in hydrology. It takes a comparative approach to learning from the differences and similarities between catchments around the world. The book also provides a comparative performance assessment (in the form of blind testing) of methods that are being used for predictions in ungauged basins, interpreted in a hydrologically meaningful way. It therefore throws light on the status of PUB at the present moment and can serve as a benchmark against which future progress on PUB can be judged. In so doing, the book has also come out with a new scientific framework that can guide the advances that are needed to underpin PUB and to advance the science of hydrology as a whole. The synthesis presented in the book is built on the collective experience of a large number of researchers around the world inspired by the PUB initiative of the International Association of Hydrological Sciences, which makes it truly a community effort. It has provided insights into the scientific, technical and societal factors that contribute to PUB. On the basis of the synthesis presented in this book, recommendations are made on the predictive, scientific and community aspects of PUB and of hydrology as a whole. www.cambridge.org


Water Resources Research | 2015

Debates—Perspectives on socio‐hydrology: Capturing feedbacks between physical and social processes

Giuliano Di Baldassarre; Alberto Viglione; Gemma Carr; Linda Kuil; Kun Yan; Luigia Brandimarte; Günter Blöschl

In flood risk assessment, there remains a lack of analytical frameworks capturing the dynamics emerging from two-way feedbacks between physical and social processes, such as adaptation and levee effect. The former, “adaptation effect”, relates to the observation that the occurrence of more frequent flooding is often associated with decreasing vulnerability. The latter, “levee effect”, relates to the observation that the non-occurrence of frequent flooding (possibly caused by flood protection structures, e.g. levees) is often associated to increasing vulnerability. As current analytical frameworks do not capture these dynamics, projections of future flood risk are not realistic. In this paper, we develop a new approach whereby the mutual interactions and continuous feedbacks between floods and societies are explicitly accounted for. Moreover, we show an application of this approach by using a socio-hydrological model to simulate the behavior of two main prototypes of societies: green societies, which cope with flooding by resettling out of flood-prone areas; and technological societies, which deal with flooding also by building levees or dikes. This application shows that the proposed approach is able to capture and explain the aforementioned dynamics (i.e. adaptation and levee effect) and therefore contribute to a better understanding of changes in flood risk, within an iterative process of theory development and empirical research.


Water Resources Research | 2013

Flood frequency hydrology: 3. A Bayesian analysis

Alberto Viglione; Ralf Merz; J. L. Salinas; Günter Blöschl

extraordinary 2002 flood event are compared for the 622 km 2 Kamp river in northern Austria. Although this outlier significantly affects the flood frequency estimates if only local flood data are used (60% difference for the 100 year flood), the effect is much reduced if all additional information is used (only 3% difference). The Bayesian analysis also shows that the estimated uncertainty is significantly reduced when more information is used (for the 100 year return period, the 90% credible intervals range reduces from 140% to 31% of the corresponding flood peak estimate). Further analyses show that the sensitivity of the flood estimates to the assumptions made on one piece of information is small when all pieces of information are considered together. While expanding information beyond the systematic flood record is sometimes considered of little value in engineering hydrology because subjective assumptions are involved, the results of this study suggest that the extra information (temporal, spatial, and causal) may outweigh the uncertainty caused by these assumptions.


Science | 2017

Changing climate shifts timing of European floods

Günter Blöschl; Julia Hall; Juraj Parajka; Rui A. P. Perdigão; Bruno Merz; Berit Arheimer; Giuseppe T. Aronica; Ardian Bilibashi; Ognjen Bonacci; Marco Borga; Ivan Čanjevac; Attilio Castellarin; Giovanni Battista Chirico; Pierluigi Claps; Károly Fiala; N. A. Frolova; Liudmyla Gorbachova; Ali Gül; Jamie Hannaford; Shaun Harrigan; M. B. Kireeva; Andrea Kiss; Thomas R. Kjeldsen; Silvia Kohnová; Jarkko Koskela; Ondrej Ledvinka; Neil Macdonald; Maria Mavrova-Guirguinova; Luis Mediero; Ralf Merz

Flooding along the river Will a warming climate affect river floods? The prevailing sentiment is yes, but a consistent signal in flood magnitudes has not been found. Blöschl et al. analyzed the timing of river floods in Europe over the past 50 years and found clear patterns of changes in flood timing that can be ascribed to climate effects (see the Perspective by Slater and Wilby). These variations include earlier spring snowmelt floods in northeastern Europe, later winter floods around the North Sea and parts of the Mediterranean coast owing to delayed winter storms, and earlier winter floods in western Europe caused by earlier soil moisture maxima. Science, this issue p. 588 see also p. 552 Climate change is affecting the timing of river flooding across Europe. A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.


Wiley Interdisciplinary Reviews: Water | 2015

Increasing river floods: fiction or reality?

Günter Blöschl; Ladislav Gaál; Julia Hall; Andrea Kiss; J. Komma; Thomas Nester; Juraj Parajka; Rui A. P. Perdigão; Lenka Plavcová; M. Rogger; J. L. Salinas; Alberto Viglione

There has been a surprisingly large number of major floods in the last years around the world, which suggests that floods may have increased and will continue to increase in the next decades. However, the realism of such changes is still hotly discussed in the literature. This overview article examines whether floods have changed in the past and explores the driving processes of such changes in the atmosphere, the catchments and the river system based on examples from Europe. Methods are reviewed for assessing whether floods may increase in the future. Accounting for feedbacks within the human‐water system is important when assessing flood changes over lead times of decades or centuries. It is argued that an integrated flood risk management approach is needed for dealing with future flood risk with a focus on reducing the vulnerability of the societal system. WIREs Water 2015, 2:329–344. doi: 10.1002/wat2.1079 For further resources related to this article, please visit the WIREs website.


Water Resources Research | 2015

Charting unknown waters—On the role of surprise in flood risk assessment and management

Bruno Merz; Sergiy Vorogushyn; Upmanu Lall; Alberto Viglione; Günter Blöschl

Unexpected incidents, failures, and disasters are abundant in the history of flooding events. In this paper, we introduce the metaphors of terra incognita and terra maligna to illustrate unknown and wicked flood situations, respectively. We argue that surprise is a neglected element in flood risk assessment and management. Two sources of surprise are identified: (1) the complexity of flood risk systems, represented by nonlinearities, interdependencies, and nonstationarities and (2) cognitive biases in human perception and decision making. Flood risk assessment and management are particularly prone to cognitive biases due to the rarity and uniqueness of extremes, and the nature of human risk perception. We reflect on possible approaches to better understanding and reducing the potential for surprise and its adverse consequences which may be supported by conceptually charting maps that separate terra incognita from terra cognita, and terra maligna from terra benigna. We conclude that flood risk assessment and management should account for the potential for surprise and devastating consequences which will require a shift in thinking.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2015

Dependence between flood peaks and volumes: a case study on climate and hydrological controls

Ladislav Gaál; Ján Szolgay; Silvia Kohnová; Kamila Hlavčová; Juraj Parajka; Alberto Viglione; Ralf Merz; Günter Blöschl

Abstract The aim of this paper is to understand the causal factors controlling the relationship between flood peaks and volumes in a regional context. A case study is performed based on 330 catchments in Austria ranging from 6 to 500 km2 in size. Maximum annual flood discharges are compared with the associated flood volumes, and the consistency of the peak–volume relationship is quantified by the Spearman rank correlation coefficient. The results indicate that climate-related factors are more important than catchment-related factors in controlling the consistency. Spearman rank correlation coefficients typically range from about 0.2 in the high alpine catchments to about 0.8 in the lowlands. The weak dependence in the high alpine catchments is due to the mix of flood types, including long-duration snowmelt, synoptic floods and flash floods. In the lowlands, the flood durations vary less in a given catchment which is related to the filtering of the distribution of all storms by the catchment response time to produce the distribution of flood producing storms. Editor Z.W. Kundzewicz


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2016

Panta Rhei 2013–2015: global perspectives on hydrology, society and change

Hilary McMillan; Alberto Montanari; Christophe Cudennec; Hubert H. G. Savenije; Heidi Kreibich; Tobias Krueger; Junguo Liu; Alfonso Mejia; Anne F. Van Loon; Hafzullah Aksoy; Giuliano Di Baldassarre; Yan Huang; Dominc Mazvimavi; M. Rogger; Bellie Sivakumar; Tatiana Bibikova; Attilo Castellarin; Yangbo Chen; David Finger; Alexander Gelfan; David M. Hannah; Arjen Ysbert Hoekstra; Hongyi Li; Shreedhar Maskey; Thibault Mathevet; Ana Mijic; Adrián Pedrozo Acuña; María José Polo; Victor Rosales; Paul Smith

ABSTRACT In 2013, the International Association of Hydrological Sciences (IAHS) launched the hydrological decade 2013–2022 with the theme “Panta Rhei: Change in Hydrology and Society”. The decade recognizes the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This paper reports on the first Panta Rhei biennium 2013–2015, providing a comprehensive resource that describes the scope and direction of Panta Rhei. We bring together the knowledge of all the Panta Rhei working groups, to summarize the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in the current era of human impacts and environmental change. Finally, we look back to the six driving science questions identified at the outset of Panta Rhei, to quantify progress towards those aims. Editor D. Koutsoyiannis; Associate editor not assigned


Water Resources Research | 2015

Accelerating advances in continental domain hydrologic modeling

Stacey A. Archfield; Martyn P. Clark; Berit Arheimer; Lauren E. Hay; Hilary McMillan; Julie E. Kiang; Jan Seibert; Kirsti Hakala; Andrew R. Bock; Thorsten Wagener; William H. Farmer; Vazken Andréassian; Sabine Attinger; Alberto Viglione; Rodney R. Knight; Steven L. Markstrom; Thomas M. Over

In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.

Collaboration


Dive into the Alberto Viglione's collaboration.

Top Co-Authors

Avatar

Günter Blöschl

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Juraj Parajka

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ralf Merz

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

M. Rogger

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. L. Salinas

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ján Szolgay

Slovak University of Technology in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Hubert H. G. Savenije

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Silvia Kohnová

Slovak University of Technology in Bratislava

View shared research outputs
Researchain Logo
Decentralizing Knowledge