Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Albrecht Neesse is active.

Publication


Featured researches published by Albrecht Neesse.


Clinical Cancer Research | 2012

The pancreas cancer microenvironment

Christine Feig; Aarthi Gopinathan; Albrecht Neesse; Derek S. Chan; Natalie Cook; David A. Tuveson

Pancreatic ductal adenocarcinoma (PDA) is a common and lethal malignancy resulting in more than 250,000 deaths per year worldwide. Despite extensive efforts, cytotoxic and targeted therapies have provided only limited efficacy for patients with PDA to date. One contributing factor to the failure of systemic therapies may be the abundant tumor stromal content that is the characteristic of PDA. The PDA stroma, aptly termed the tumor microenvironment, occupies the majority of the tumor mass, and consists of a dynamic assortment of extracellular matrix components and nonneoplastic cells including fibroblastic, vascular, and immune cells. Recent work has revealed that the PDA stroma supports tumor growth and promotes metastasis and simultaneously serves as a physical barrier to drug delivery. Accordingly, methods that alter stromal composition or function, for instance interference with the vasculature via Notch/Hedgehog pathway inhibition or relief of vascular compression by hyaluronidase, are under active investigation. Here, we will review our current understanding of the PDA tumor microenvironment, and highlight opportunities for further exploration that may benefit patients. Clin Cancer Res; 18(16); 4266–76. ©2012 AACR.


Gut | 2013

Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer

Michael A. Jacobetz; Derek S. Chan; Albrecht Neesse; Tashinga E. Bapiro; Natalie Cook; Kristopher K. Frese; Christine Feig; Tomoaki Nakagawa; Meredith E. Caldwell; Heather I Zecchini; Martijn P. Lolkema; Ping Jiang; Anne Kultti; Curtis B. Thompson; Daniel C. Maneval; Duncan I. Jodrell; Gregory I. Frost; Harold Michael Shepard; Jeremy N. Skepper; David A. Tuveson

Objective Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA. Methods Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies. Results PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility. Conclusions The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer.


Gut | 2011

Stromal biology and therapy in pancreatic cancer

Albrecht Neesse; Patrick Michl; Kristopher K. Frese; Christine Feig; Natalie Cook; Mike Jacobetz; Martijn P. Lolkema; Malte Buchholz; Kenneth P. Olive; Thomas M. Gress; David A. Tuveson

Pancreatic ductal adenocarcinoma (PDA) is an almost uniformly lethal disease. One explanation for the devastating prognosis is the failure of many chemotherapies, including the current standard of care therapy gemcitabine. Although our knowledge of the molecular events underlying multistep carcinogenesis in PDA has steadily increased, translation into more effective therapeutic approaches has been inefficient over the last several decades. Evidence for this innate resistance to systemic therapies was recently provided in an accurate mouse model of PDA by the demonstration that chemotherapies are poorly delivered to PDA tissues because of a deficient vasculature. This vascular deficiency correlated with the presence of a dense stromal matrix that is a prominent histological hallmark of PDA tumours. Therapeutic targeting of stromal cells decreased the stroma from pancreatic tumours, resulting in increased intratumoral perfusion and therapeutic delivery of gemcitabine. Stromal cells contained within the PDA tumour microenvironment therefore represent an additional constituent to neoplastic cells that should be critically evaluated for optimal therapeutic development in preclinical models and early clinical trials.


Cancer Discovery | 2012

nab-Paclitaxel Potentiates Gemcitabine Activity by Reducing Cytidine Deaminase Levels in a Mouse Model of Pancreatic Cancer

Kristopher K. Frese; Albrecht Neesse; Natalie Cook; Tashinga E. Bapiro; Martijn P. Lolkema; Duncan I. Jodrell; David A. Tuveson

UNLABELLED Nanoparticle albumin-bound (nab)-paclitaxel, an albumin-stabilized paclitaxel formulation, demonstrates clinical activity when administered in combination with gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma (PDA). The limited availability of patient tissue and exquisite sensitivity of xenografts to chemotherapeutics have limited our ability to address the mechanistic basis of this treatment regimen. Here, we used a mouse model of PDA to show that the coadministration of nab-paclitaxel and gemcitabine uniquely demonstrates evidence of tumor regression. Combination treatment increases intratumoral gemcitabine levels attributable to a marked decrease in the primary gemcitabine metabolizing enzyme, cytidine deaminase. Correspondingly, paclitaxel reduced the levels of cytidine deaminase protein in cultured cells through reactive oxygen species-mediated degradation, resulting in the increased stabilization of gemcitabine. Our findings support the concept that suboptimal intratumoral concentrations of gemcitabine represent a crucial mechanism of therapeutic resistance in PDA and highlight the advantages of genetically engineered mouse models in preclinical therapeutic trials. SIGNIFICANCE This study provides mechanistic insight into the clinical cooperation observed between gemcitabine and nab-paclitaxel in the treatment of pancreatic cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2013

CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer

Albrecht Neesse; Kristopher K. Frese; Tashinga E. Bapiro; Tomoaki Nakagawa; Mark D. Sternlicht; Todd W. Seeley; Christian Pilarsky; Duncan I. Jodrell; Suzanne M. Spong; David A. Tuveson

Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit the access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA tumor microenvironment promote concomitant chemotherapy delivery and increased antineoplastic response in murine models of PDA. Prior studies could not determine whether chemotherapy delivery or microenvironment modulation per se were the dominant features in treatment response, and such information could guide the optimal translation of these preclinical findings to patients. To distinguish between these possibilities, we used a chemical inhibitor of cytidine deaminase to stabilize and thereby artificially elevate gemcitabine levels in murine PDA tumors without disrupting the tumor microenvironment. Additionally, we used the FG-3019 monoclonal antibody (mAb) that is directed against the pleiotropic matricellular signaling protein connective tissue growth factor (CTGF/CCN2). Inhibition of cytidine deaminase raised the levels of activated gemcitabine within PDA tumors without stimulating neoplastic cell killing or decreasing the growth of tumors, whereas FG-3019 increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. The response to FG-3019 correlated with the decreased expression of a previously described promoter of PDA chemotherapy resistance, the X-linked inhibitor of apoptosis protein. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models, and by extension in PDA patients.


Gut | 2014

SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice

Albrecht Neesse; Kristopher K. Frese; Derek S. Chan; Tashinga E. Bapiro; William J. Howat; Frances M. Richards; Volker Ellenrieder; Duncan I. Jodrell; David A. Tuveson

Design Pharmacokinetic and pharmacodynamic parameters of cremophor-paclitaxel, nab-paclitaxel (human-albumin-bound paclitaxel, Abraxane) and a novel mouse-albumin-bound paclitaxel (m-nab-paclitaxel) were evaluated in genetically engineered mouse models (GEMMs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), histological and biochemical analysis. Preclinical evaluation of m-nab-paclitaxel included assessment by three-dimensional high-resolution ultrasound and molecular analysis in a novel secreted protein acidic and rich in cysteine (SPARC)-deficient GEMM of pancreatic ductal adenocarcinoma (PDA). Results nab-Paclitaxel exerted its antitumoural effects in a dose-dependent manner and was associated with less toxicity compared with cremophor-paclitaxel. SPARC nullizygosity in a GEMM of PDA, KrasG12D;p53flox/−;p48Cre (KPfC), resulted in desmoplastic ductal pancreas tumours with impaired collagen maturation. Paclitaxel concentrations were significantly decreased in SPARC null plasma samples and tissues when administered as low-dose m-nab-paclitaxel. At the maximally tolerated dose, SPARC deficiency did not affect the intratumoural paclitaxel concentration, stromal deposition and the immediate therapeutic response. Conclusions nab-Paclitaxel accumulates and acts in a dose-dependent manner. The interaction of plasma SPARC and albumin-bound drugs is observed at low doses of nab-paclitaxel but is saturated at therapeutic doses in murine tumours. Thus, this study provides important information for future preclinical and clinical trials in PDA using nab-paclitaxel in combination with novel experimental and targeted agents.


Gut | 2013

Claudin-4-targeted optical imaging detects pancreatic cancer and its precursor lesions

Albrecht Neesse; Anke Hahnenkamp; Heidi Griesmann; Malte Buchholz; Stefan A Hahn; Abdelouahid Maghnouj; Volker Fendrich; Janine Ring; Bence Sipos; David A. Tuveson; Christoph Bremer; Thomas M. Gress; Patrick Michl

Objectives Novel imaging methods based on specific molecular targets to detect both established neoplasms and their precursor lesions are highly desirable in cancer medicine. Previously, we identified claudin-4, an integral constituent of tight junctions, as highly expressed in various gastrointestinal tumours including pancreatic cancer. Here, we investigate the potential of targeting claudin-4 with a naturally occurring ligand to visualise pancreatic cancer and its precursor lesions in vitro and in vivo by near-infrared imaging approaches. Design A non-toxic C-terminal fragment of the claudin-4 ligand Clostridium perfringens enterotoxin (C-CPE) was labelled with a cyanine dye (Cy5.5). Binding of the optical tracer was analysed on claudin-4 positive and negative cells in vitro, and tumour xenografts in vivo. In addition, two genetically engineered mouse models for pancreatic intraepithelial neoplasia (PanIN) and pancreatic cancer were used for in vivo validation. Optical imaging studies were conducted using 2D planar fluorescence reflectance imaging (FRI) technology and 3D fluorescence-mediated tomography (FMT). Results In vitro, the peptide-dye conjugate showed high binding affinity to claudin-4 positive CAPAN1 cells, while claudin-4 negative HT1080 cells revealed little or no fluorescence. In vivo, claudin-4 positive tumour xenografts, endogenous pancreatic tumours, hepatic metastases, as well as preinvasive PanIN lesions, were visualised by FRI and FMT up to 48 h after injection showing a significantly higher average of fluorochrome concentration as compared with claudin-4 negative xenografts and normal pancreatic tissue. Conclusions C-CPE-Cy5.5 combined with novel optical imaging methods enables non-invasive visualisation of claudin-4 positive murine pancreatic tumours and their precursor lesions, representing a promising modality for early diagnostic imaging.


Cancer Discovery | 2014

Inflammation-Induced NFATc1–STAT3 Transcription Complex Promotes Pancreatic Cancer Initiation by KrasG12D

Sandra Baumgart; Nai Ming Chen; Jens T. Siveke; Alexander König; Jin San Zhang; Shiv K. Singh; Elmar Wolf; Marek Bartkuhn; Irene Esposito; Elisabeth Heßmann; Johanna Reinecke; Julius Nikorowitsch; Marius Brunner; Garima Singh; Martin E. Fernandez-Zapico; Thomas C. Smyrk; William R. Bamlet; Martin Eilers; Albrecht Neesse; Thomas M. Gress; Daniel D. Billadeau; David A. Tuveson; Raul Urrutia; V Ellenrieder

UNLABELLED Cancer-associated inflammation is a molecular key feature in pancreatic ductal adenocarcinoma. Oncogenic KRAS in conjunction with persistent inflammation is known to accelerate carcinogenesis, although the underlying mechanisms remain poorly understood. Here, we outline a novel pathway whereby the transcription factors NFATc1 and STAT3 cooperate in pancreatic epithelial cells to promote Kras(G12D)-driven carcinogenesis. NFATc1 activation is induced by inflammation and itself accelerates inflammation-induced carcinogenesis in Kras(G12D) mice, whereas genetic or pharmacologic ablation of NFATc1 attenuates this effect. Mechanistically, NFATc1 complexes with STAT3 for enhancer-promoter communications at jointly regulated genes involved in oncogenesis, for example, Cyclin, EGFR and WNT family members. The NFATc1-STAT3 cooperativity is operative in pancreatitis-mediated carcinogenesis as well as in established human pancreatic cancer. Together, these studies unravel new mechanisms of inflammatory-driven pancreatic carcinogenesis and suggest beneficial effects of chemopreventive strategies using drugs that are currently available for targeting these factors in clinical trials. SIGNIFICANCE Our study points to the existence of an oncogenic NFATc1-STAT3 cooperativity that mechanistically links inflammation with pancreatic cancer initiation and progression. Because NFATc1-STAT3 nucleoprotein complexes control the expression of gene networks at the intersection of inflammation and cancer, our study has significant relevance for potentially managing pancreatic cancer and other inflammatory-driven malignancies.


OncoTargets and Therapy | 2013

Emerging concepts in pancreatic cancer medicine: targeting the tumor stroma

Albrecht Neesse; Sebastian Krug; Thomas M. Gress; David A. Tuveson; Patrick Michl

Pancreatic ductal adenocarcinoma is a stroma-rich and highly challenging cancer to treat. Over recent years, it has become increasingly evident that the complex network of soluble cytokines, growth factors, proteases, and components of the extracellular matrix collaboratively interact within the tumor microenvironment, sustaining and driving cancer cell proliferation, invasion, and early metastasis. More recently, the tumor microenvironment has also been appreciated to mediate therapeutic resistance in pancreatic ductal adenocarcinoma, thus opening numerous avenues for novel therapeutic explorations. Inert and soluble components of the tumor stroma have been targeted in order to break down the extracellular matrix scaffold, relieve vessel compression, and increase drug delivery to hypovascular tumors. Moreover, targeting of antiapoptotic, immunosuppressive, and pro-proliferative effects of the tumor stroma provides novel vantage points of attack. This review focuses on current and future developments in pancreatic cancer medicine, with a particular emphasis on biophysical and biochemical approaches that target the tumor microenvironment.


Pancreatology | 2012

Direct histological processing of EUS biopsies enables rapid molecular biomarker analysis for interventional pancreatic cancer trials

Rebecca Brais; Susan E. Davies; Maria O’Donovan; Ben W. Simpson; Natalie Cook; Walter C. Darbonne; Sian Chilcott; Martijn P. Lolkema; Albrecht Neesse; Michelle Lockley; Pippa Corrie; Duncan I. Jodrell; Raaj K. Praseedom; Emmanuel Huguet; Asif Jah; Neville V. Jamieson; Frederic J. de Sauvage; David A. Tuveson; Nicholas Carroll

OBJECTIVE Current practice to diagnose pancreatic cancer is accomplished by endoscopic ultrasound guided fine needle aspiration (EUS-FNA) using a cytological approach. This method is time consuming and often fails to provide suitable specimens for modern molecular analyses. Here, we compare the cytological approach with direct formalin fixation of pancreatic EUS-FNA micro-cores and evaluate the potential to perform molecular biomarker analysis on these specimen. METHODS 130 specimens obtained by EUS-FNA with a 22G needle were processed by the standard cytological approach and compared to a separate cohort of 130 specimens that were immediately formalin fixed to preserve micro-cores of tissue prior to routine histological processing. RESULTS We found that direct formalin fixation significantly shortened the time required for diagnosis from 3.6 days to 2.9 days (p<0.05) by reducing the average time (140 vs 33 min/case) and number of slides (9.65 vs 4.67 slides/case) for histopathological processing. Specificity and sensitivity yielded comparable results between the two approaches (82.3% vs 77% and 90.9% vs 100%). Importantly, EUS-FNA histology preserved the tumour tissue architecture with neoplastic glands embedded in stroma in 67.89% of diagnostic cases compared to 27.55% with the standard cytological approach (p < 0.001). Furthermore, micro-core samples were suitable for molecular studies including the immunohistochemical detection of intranuclear Hes1 in malignant cells, and the laser-capture microdissection-mediated measurement of Gli-1 mRNA in tumour stromal myofibroblasts. CONCLUSIONS Direct formalin fixation of pancreatic EUS-FNA micro-cores demonstrates superiority regarding diagnostic delay, costs, and specimen suitability for molecular studies. We advocate this approach for future investigational trials in pancreatic cancer patients.

Collaboration


Dive into the Albrecht Neesse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Tuveson

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge