Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elisabeth Hessmann is active.

Publication


Featured researches published by Elisabeth Hessmann.


The EMBO Journal | 2015

Antithetical NFATc1–Sox2 and p53–miR200 signaling networks govern pancreatic cancer cell plasticity

Shiv K. Singh; Nai Ming Chen; Elisabeth Hessmann; Jens T. Siveke; Marlen Lahmann; Garima Singh; Nadine Voelker; Sophia Vogt; Irene Esposito; Ansgar Schmidt; Cornelia Brendel; Thorsten Stiewe; Jochen Gaedcke; Marco Mernberger; Howard C. Crawford; William R. Bamlet; Jin San Zhang; Xiao Kun Li; Thomas C. Smyrk; Daniel D. Billadeau; Matthias Hebrok; Albrecht Neesse; Alexander Koenig; Volker Ellenrieder

In adaptation to oncogenic signals, pancreatic ductal adenocarcinoma (PDAC) cells undergo epithelial–mesenchymal transition (EMT), a process combining tumor cell dedifferentiation with acquisition of stemness features. However, the mechanisms linking oncogene‐induced signaling pathways with EMT and stemness remain largely elusive. Here, we uncover the inflammation‐induced transcription factor NFATc1 as a central regulator of pancreatic cancer cell plasticity. In particular, we show that NFATc1 drives EMT reprogramming and maintains pancreatic cancer cells in a stem cell‐like state through Sox2‐dependent transcription of EMT and stemness factors. Intriguingly, NFATc1–Sox2 complex‐mediated PDAC dedifferentiation and progression is opposed by antithetical p53‐miR200c signaling, and inactivation of the tumor suppressor pathway is essential for tumor dedifferentiation and dissemination both in genetically engineered mouse models (GEMM) and human PDAC. Based on these findings, we propose the existence of a hierarchical signaling network regulating PDAC cell plasticity and suggest that the molecular decision between epithelial cell preservation and conversion into a dedifferentiated cancer stem cell‐like phenotype depends on opposing levels of p53 and NFATc1 signaling activities.


Nature Communications | 2015

Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition.

Ronan Russell; Lukas Perkhofer; Stefan Liebau; Qiong Lin; André Lechel; Fenja M Feld; Elisabeth Hessmann; Jochen Gaedcke; Melanie Güthle; Martin Zenke; Daniel Hartmann; Guido von Figura; Stephanie E Weissinger; Kl Rudolph; Peter Møller; Jochen K. Lennerz; Thomas Seufferlein; Martin Wagner; Alexander Kleger

Pancreatic ductal adenocarcinoma (PDAC) is associated with accumulation of particular oncogenic mutations and recent genetic sequencing studies have identified ataxia telangiectasia-mutated (ATM) mutations in PDAC cohorts. Here we report that conditional deletion of ATM in a mouse model of PDAC induces a greater number of proliferative precursor lesions coupled with a pronounced fibrotic reaction. ATM-targeted mice display altered TGFβ-superfamily signalling and enhanced epithelial-to-mesenchymal transition (EMT) coupled with shortened survival. Notably, our mouse model recapitulates many features of more aggressive human PDAC subtypes. Particularly, we report that low expression of ATM predicts EMT, a gene signature specific for Bmp4 signalling and poor prognosis in human PDAC. Our data suggest an intimate link between ATM expression and pancreatic cancer progression in mice and men.


Gut | 2017

Epigenetic treatment of pancreatic cancer: is there a therapeutic perspective on the horizon?

Elisabeth Hessmann; Steven A. Johnsen; Jens T. Siveke; Volker Ellenrieder

Pancreatic ductal adenocarcinoma (PDAC) constitutes one of the most aggressive malignancies with a 5-year survival rate of <7%. Due to growing incidence, late diagnosis and insufficient treatment options, PDAC is predicted to soon become one of the leading causes of cancer-related death. Although intensified cytostatic combinations, particularly gemcitabine plus nab-paclitaxel and the folinic acid, fluorouracil, irinotecan, oxaliplatin (FOLFIRINOX) protocol, provide some improvement in efficacy and survival compared with gemcitabine alone, a breakthrough in the treatment of metastatic pancreatic cancer remains out of sight. Nevertheless, recent translational research activities propose that either modulation of the immune response or pharmacological targeting of epigenetic modifications alone, or in combination with chemotherapy, might open highly powerful therapeutic avenues in GI cancer entities, including pancreatic cancer. Deregulation of key epigenetic factors and chromatin-modifying proteins, particularly those responsible for the addition, removal or recognition of post-translational histone modifications, are frequently found in human pancreatic cancer and hence constitute particularly exciting treatment opportunities. This review summarises both current clinical trial activities and discovery programmes initiated throughout the biopharma landscape, and critically discusses the chances, hurdles and limitations of epigenetic-based therapy in future PDAC treatment.


Gut | 2018

Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer

Elisabeth Hessmann; M S Patzak; L Klein; Nai Ming Chen; V Kari; I Ramu; Tashinga E. Bapiro; Kristopher K. Frese; Aarthi Gopinathan; Frances M. Richards; Duncan I. Jodrell; Caroline S. Verbeke; X Li; R Heuchel; J M Löhr; S A Johnsen; Thomas M. Gress; V Ellenrieder; A Neesse

Objective Desmoplasia and hypovascularity are thought to impede drug delivery in pancreatic ductal adenocarcinoma (PDAC). However, stromal depletion approaches have failed to show clinical responses in patients. Here, we aimed to revisit the role of the tumour microenvironment as a physical barrier for gemcitabine delivery. Design Gemcitabine metabolites were analysed in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) murine tumours and matched liver metastases, primary tumour cell lines, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs) by liquid chromatography-mass spectrometry/mass spectrometry. Functional and preclinical experiments, as well as expression analysis of stromal markers and gemcitabine metabolism pathways were performed in murine and human specimen to investigate the preclinical implications and the mechanism of gemcitabine accumulation. Results Gemcitabine accumulation was significantly enhanced in fibroblast-rich tumours compared with liver metastases and normal liver. In vitro, significantly increased concentrations of activated 2′,2′-difluorodeoxycytidine-5′-triphosphate (dFdCTP) and greatly reduced amounts of the inactive gemcitabine metabolite 2′,2′-difluorodeoxyuridine were detected in PSCs and CAFs. Mechanistically, key metabolic enzymes involved in gemcitabine inactivation such as hydrolytic cytosolic 5′-nucleotidases (Nt5c1A, Nt5c3) were expressed at low levels in CAFs in vitro and in vivo, and recombinant expression of Nt5c1A resulted in decreased intracellular dFdCTP concentrations in vitro. Moreover, gemcitabine treatment in KPC mice reduced the number of liver metastases by >50%. Conclusions Our findings suggest that fibroblast drug scavenging may contribute to the clinical failure of gemcitabine in desmoplastic PDAC. Metabolic targeting of CAFs may thus be a promising strategy to enhance the antiproliferative effects of gemcitabine.


Nucleic Acids Research | 2017

Histone deacetylase class-I inhibition promotes epithelial gene expression in pancreatic cancer cells in a BRD4- and MYC-dependent manner

Vivek Kumar Mishra; Florian Wegwitz; Robyn Laura Kosinsky; Madhobi Sen; Roland Baumgartner; Tanja Wulff; Jens T. Siveke; Hans-Ulrich Schildhaus; Zeynab Najafova; Vijayalakshmi Kari; Hella Kohlhof; Elisabeth Hessmann; Steven A. Johnsen

Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a particularly dismal prognosis. Histone deacetylases (HDAC) are epigenetic modulators whose activity is frequently deregulated in various cancers including PDAC. In particular, class-I HDACs (HDAC 1, 2, 3 and 8) have been shown to play an important role in PDAC. In this study, we investigated the effects of the class I-specific HDAC inhibitor (HDACi) 4SC-202 in multiple PDAC cell lines in promoting tumor cell differentiation. We show that 4SC-202 negatively affects TGFβ signaling and inhibits TGFβ-induced epithelial-to-mesenchymal transition (EMT). Moreover, 4SC-202 markedly induced p21 (CDKN1A) expression and significantly attenuated cell proliferation. Mechanistically, genome-wide studies revealed that 4SC-202-induced genes were enriched for Bromodomain-containing Protein-4 (BRD4) and MYC occupancy. BRD4, a well-characterized acetyllysine reader, has been shown to play a major role in regulating transcription of selected subsets of genes. Importantly, BRD4 and MYC are essential for the expression of a subgroup of genes induced by class-I HDACi. Taken together, our study uncovers a previously unknown role of BRD4 and MYC in eliciting the HDACi-mediated induction of a subset of genes and provides molecular insight into the mechanisms of HDACi action in PDAC.


Stem Cells International | 2016

NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation

Elisabeth Hessmann; Jin San Zhang; Nai Ming Chen; Marie Hasselluhn; Geou Yarh Liou; Peter Storz; V Ellenrieder; Daniel D. Billadeau; Alexander Koenig

Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC) development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR) or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.


Molecular Cancer Therapeutics | 2016

GSK-3β Governs Inflammation-Induced NFATc2 Signaling Hubs to Promote Pancreatic Cancer Progression

Sandra Baumgart; Nai Ming Chen; Jin San Zhang; Daniel D. Billadeau; Irina N. Gaisina; Alan P. Kozikowski; Shiv K. Singh; Daniel Fink; Philipp Ströbel; Caroline Klindt; Lizhi Zhang; William R. Bamlet; Alexander Koenig; Elisabeth Hessmann; Thomas M. Gress; V Ellenrieder; A Neesse

We aimed to investigate the mechanistic, functional, and therapeutic role of glycogen synthase kinase 3β (GSK-3β) in the regulation and activation of the proinflammatory oncogenic transcription factor nuclear factor of activated T cells (NFATc2) in pancreatic cancer. IHC, qPCR, immunoblotting, immunofluorescence microscopy, and proliferation assays were used to analyze mouse and human tissues and cell lines. Protein–protein interactions and promoter regulation were analyzed by coimmunoprecipitation, DNA pulldown, reporter, and ChIP assays. Preclinical assays were performed using a variety of pancreatic cancer cells lines, xenografts, and a genetically engineered mouse model (GEMM). GSK-3β–dependent SP2 phosphorylation mediates NFATc2 protein stability in the nucleus of pancreatic cancer cells stimulating pancreatic cancer growth. In addition to protein stabilization, GSK-3β also maintains NFATc2 activation through a distinct mechanism involving stabilization of NFATc2–STAT3 complexes independent of SP2 phosphorylation. For NFATc2–STAT3 complex formation, GSK-3β–mediated phosphorylation of STAT3 at Y705 is required to stimulate euchromatin formation of NFAT target promoters, such as cyclin-dependent kinase-6, which promotes tumor growth. Finally, preclinical experiments suggest that targeting the NFATc2–STAT3–GSK-3β module inhibits proliferation and tumor growth and interferes with inflammation-induced pancreatic cancer progression in KrasG12D mice. In conclusion, we describe a novel mechanism by which GSK-3β fine-tunes NFATc2 and STAT3 transcriptional networks to integrate upstream signaling events that govern pancreatic cancer progression and growth. Furthermore, the therapeutic potential of GSK-3β is demonstrated for the first time in a relevant Kras and inflammation-induced GEMM for pancreatic cancer. Mol Cancer Ther; 15(3); 491–502. ©2016 AACR.


Cancer Research | 2017

ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage

Lukas Perkhofer; Anna Schmitt; Maria Carolina Romero Carrasco; Michaela Ihle; Stephanie Hampp; Dietrich A. Ruess; Elisabeth Hessmann; Ronan Russell; André Lechel; Ninel Azoitei; Qiong Lin; Stefan Liebau; Meike Hohwieler; Hanibal Bohnenberger; Marina Lesina; Hana Algül; Laura Gieldon; Evelin Schröck; Jochen Gaedcke; Martin Wagner; Lisa Wiesmüller; Bence Sipos; Thomas Seufferlein; Hans Christian Reinhardt; Pierre Olivier Frappart; Alexander Kleger

Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATM deficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. Cancer Res; 77(20); 5576-90. ©2017 AACR.


Gastroenterology | 2017

Context-Dependent Epigenetic Regulation of Nuclear Factor of Activated T Cells 1 in Pancreatic Plasticity

Nai-Ming Chen; A Neesse; Moritz Lino Dyck; Benjamin Steuber; Alexander O. Koenig; Clara Lubeseder-Martellato; Thore Winter; Teresa Forster; Hanibal Bohnenberger; Julia Kitz; Kirsten Reuter-Jessen; Heidi Griesmann; Jochen Gaedcke; Marian Grade; Jin-San Zhang; Wan-Chi Tsai; Jens T. Siveke; Hans-Ulrich Schildhaus; Philipp Ströbel; Steven A. Johnsen; V Ellenrieder; Elisabeth Hessmann

BACKGROUND & AIMS The ability of exocrine pancreatic cells to change the cellular phenotype is required for tissue regeneration upon injury, but also contributes to their malignant transformation and tumor progression. We investigated context-dependent signaling and transcription mechanisms that determine pancreatic cell fate decisions toward regeneration and malignancy. In particular, we studied the function and regulation of the inflammatory transcription factor nuclear factor of activated T cells 1 (NFATC1) in pancreatic cell plasticity and tissue adaptation. METHODS We analyzed cell plasticity during pancreatic regeneration and transformation in mice with pancreas-specific expression of a constitutively active form of NFATC1, or depletion of enhancer of zeste 2 homologue 2 (EZH2), in the context of wild-type or constitutively activate Kras, respectively. Acute and chronic pancreatitis were induced by intraperitoneal injection of caerulein. EZH2-dependent regulation of NFATC1 expression was studied in mouse in human pancreatic tissue and cells by immunohistochemistry, immunoblotting, and quantitative reverse transcription polymerase chain reaction. We used genetic and pharmacologic approaches of EZH2 and NFATC1 inhibition to study the consequences of pathway disruption on pancreatic morphology and function. Epigenetic modifications on the NFATC1 gene were investigated by chromatin immunoprecipitation assays. RESULTS NFATC1 was rapidly and transiently induced in early adaptation to acinar cell injury in human samples and in mice, where it promoted acinar cell transdifferentiation and blocked proliferation of metaplastic pancreatic cells. However, in late stages of regeneration, Nfatc1 was epigenetically silenced by EZH2-dependent histone methylation, to enable acinar cell redifferentiation and prevent organ atrophy and exocrine insufficiency. In contrast, oncogenic activation of KRAS signaling in pancreatic ductal adenocarcinoma cells reversed the EZH2-dependent effects on the NFATC1 gene and was required for EZH2-mediated transcriptional activation of NFATC1. CONCLUSIONS In studies of human and mouse pancreatic cells and tissue, we identified context-specific epigenetic regulation of NFATc1 activity as an important mechanism of pancreatic cell plasticity. Inhibitors of EZH2 might therefore interfere with oncogenic activity of NFATC1 and be used in treatment of pancreatic ductal adenocarcinoma.


Journal of carcinogenesis & mutagenesis | 2014

NFAT in Pancreatic Carcinogenesis

Elisabeth Hessmann; Volker Ellenrieder; Alex; er Koenig

Pancreatic Ductal Adenocarcinoma (PDAC) belongs to the most aggressive malignancies among solid tumors. The increasing incidence of PDAC and its dismal prognosis with a five-years overall survival rate of less than five percent characterize PDAC as one of the most clinically challenging diseases among all malignancies. In recent years, increasing knowledge about the molecular pathogenesis of PDAC has shown that mutational activation of oncogenic Kras represents the defining event in pancreatic cancer initiation, but full neoplastic pancreatic cancer progression requires dysregulation of additional pathways. In this review we summarize and discuss the impact of inflammation-induced transcription of the of Activates T-cell (NFAT)-family in pancreatic carcinogenesis.

Collaboration


Dive into the Elisabeth Hessmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

V Ellenrieder

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens T. Siveke

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Nai-Ming Chen

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Neesse

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Gaedcke

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge