Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aldrin V. Gomes is active.

Publication


Featured researches published by Aldrin V. Gomes.


Circulation Research | 2006

Mapping the murine cardiac 26S proteasome complexes

Aldrin V. Gomes; Chenggong Zong; Ricky D. Edmondson; Xiaohai Li; Enrico Stefani; Jun Zhang; Richard C. Jones; Sheeno Thyparambil; Guang Wu Wang; Xin Qiao; Fawzia Bardag-Gorce; Peipei Ping

The importance of proteasomes in governing the intracellular protein degradation process has been increasingly recognized. Recent investigations indicate that proteasome complexes may exist in a species- and cell-type–specific fashion. To date, despite evidence linking impaired protein degradation to cardiac disease phenotypes, virtually nothing is known regarding the molecular composition, function, or regulation of cardiac proteasomes. We have taken a functional proteomic approach to characterize 26S proteasomes in the murine heart. Multidimensional chromatography was used to obtain highly purified and functionally viable cardiac 20S and 19S proteasome complexes, which were subjected to electrophoresis and tandem mass spectrometry analyses. Our data revealed complex molecular organization of cardiac 26S proteasomes, some of which are similar to what were reported in yeast, whereas others exhibit contrasting features that have not been previously identified in other species or cell types. At least 36 distinct subunits (17 of 20S and 19 of 19S) are coexpressed and assembled as 26S proteasomes in this vital cardiac organelle, whereas the expression of PA200 and 11S subunits were detected with limited participation in the 26S complexes. The 19S subunits included a new alternatively spliced isoform of Rpn10 (Rpn10b) along with its primary isoform (Rpn10a). Immunoblotting and immunocytochemistry verified the expression of key &agr; and &bgr; subunits in cardiomyocytes. The expression of 14 constitutive &agr; and &bgr; subunits in parallel with their three inducible subunits (&bgr;1i, &bgr;2i, and &bgr;5i) in the normal heart was not expected; these findings represent a distinct level of structural complexity of cardiac proteasomes, significantly different from that of yeast and human erythrocytes. Furthermore, liquid chromatography/tandem mass spectroscopy characterized 3 distinct types of post-translational modifications including (1) N-terminal acetylation of 19S subunits (Rpn1, Rpn5, Rpn6, Rpt3, and Rpt6) and 20S subunits (&agr;2, &agr;5, &agr;7, &bgr;3, and &bgr;4); (2) N-terminal myristoylation of a 19S subunit (Rpt2); and (3) phosphorylation of 20S subunits (eg, &agr;7)). Taken together, this report presents the first comprehensive characterization of cardiac 26S proteasomes, providing critical structural and proteomic information fundamental to our future understanding of this essential protein degradation system in the normal and diseased myocardium.


Journal of Molecular and Cellular Cardiology | 2010

Mutations in Troponin that cause HCM, DCM AND RCM: What can we learn about thin filament function?

Ruth H. Willott; Aldrin V. Gomes; Audrey N. Chang; Michelle S. Parvatiyar; Jose R. Pinto; James D. Potter

Troponin (Tn) is a critical regulator of muscle contraction in cardiac muscle. Mutations in Tn subunits are associated with hypertrophic, dilated and restrictive cardiomyopathies. Improved diagnosis of cardiomyopathies as well as intensive investigation of new mouse cardiomyopathy models has significantly enhanced this field of research. Recent investigations have showed that the physiological effects of Tn mutations associated with hypertrophic, dilated and restrictive cardiomyopathies are different. Impaired relaxation is a universal finding of most transgenic models of HCM, predicted directly from the significant changes in Ca(2+) sensitivity of force production. Mutations associated with HCM and RCM show increased Ca(2+) sensitivity of force production while mutations associated with DCM demonstrate decreased Ca(2+) sensitivity of force production. This review spotlights recent advances in our understanding on the role of Tn mutations on ATPase activity, maximal force development and heart function as well as the correlation between the locations of these Tn mutations within the thin filament and myofilament function.


Circulation Research | 2006

Regulation of Murine Cardiac 20S Proteasomes. Role of Associating Partners

Chenggong Zong; Aldrin V. Gomes; Oliver Drews; Xiaohai Li; Glen W. Young; Beniam Berhane; Xin Qiao; Samuel W. French; Fawzia Bardag-Gorce; Peipei Ping

Our recent studies have provided a proteomic blueprint of the 26S proteasome complexes in the heart, among which 20S proteasomes were found to contain cylinder-shaped structures consisting of both α and β subunits. These proteasomes exhibit a number of features unique to the myocardium, including striking differences in post-translational modifications (PTMs) of individual subunits and novel PTMs that have not been previously reported. To date, mechanisms contributing to the regulation of this myocardial proteolytic core system remain largely undefined; in particular, little is known regarding PTM-dependent regulation of cardiac proteasomes. In this investigation, we seek to elucidate the function and regulation of 20S proteasome complexes in the heart. Functionally viable murine cardiac 20S proteasomes were purified. Tandem mass spectrometry analyses, combined with native gel electrophoresis, immunoprecipitation, and immunoblotting, revealed the identification of 2 previously unrecognized functional partners in the endogenous intact cardiac 20S complexes: protein phosphatase 2A (PP2A), and protein kinase A (PKA). Furthermore, our results demonstrated that PP2A and PKA profoundly impact the proteolytic function of 20S proteasomes: phosphorylation of 20S complexes enhances the peptidase activity of individual subunits in a substrate-specific fashion. Moreover, inhibition of PP2A or the addition of PKA significantly modified both the serine- and threonine-phosphorylation profile of proteasomes; multiple individual subunits of 20S (eg, α1 and β2) were targets of PP2A and PKA. Taken together, these studies provide the first demonstration that the function of cardiac 20S proteasomes is modulated by associating partners and that phosphorylation may serve as a key mechanism for regulation.


Analytical Biochemistry | 2013

Stain Free Total Protein Staining is a Superior Loading Control to β-Actin for Western Blots

Aldrin V. Gomes

Semi-quantification of proteins using Western blots typically involves normalization against housekeeping genes such as β-actin. More recently, Ponceau S and Coomassie blue staining have both been shown to be suitable alternatives to housekeeping genes as loading controls. Stain-Free total protein staining offers the advantage of no staining or destaining steps. Evaluation of the use of Stain-Free staining as an alternative to β-actin or the protein stain Ponceau S showed that Stain-Free staining was superior to β-actin and as good as or better than Ponceau S staining as a loading control for Western blots.


Journal of Biological Chemistry | 2002

Cardiac troponin T isoforms affect the Ca2+ sensitivity and inhibition of force development. Insights into the role of troponin T isoforms in the heart.

Aldrin V. Gomes; Georgianna Guzman; Jiaju Zhao; James D. Potter

At least four isoforms of troponin T (TnT) exist in the human heart, and they are expressed in a developmentally regulated manner. To determine whether the different N-terminal isoforms are functionally distinct with respect to structure, Ca2+ sensitivity, and inhibition of force development, the four known human cardiac troponin T isoforms, TnT1 (all exons present), TnT2 (missing exon 4), TnT3 (missing exon 5), and TnT4 (missing exons 4 and 5), were expressed, purified, and utilized in skinned fiber studies and in reconstituted actomyosin ATPase assays. TnT3, the adult isoform, had a slightly higher α-helical content than the other three isoforms. The variable region in the N terminus of cardiac TnT was found to contribute to the determination of the Ca2+ sensitivity of force development in a charge-dependent manner; the greater the charge the higher the Ca2+ sensitivity, and this was primarily because of exon 5. These studies also demonstrated that removal of either exon 4 or exon 5 from TnT increased the cooperativity of the pCa force relationship. Troponin complexes reconstituted with the four TnT isoforms all yielded the same maximal actin-tropomyosin-activated myosin ATPase activity. However, troponin complexes containing either TnT1 or TnT2 (both containing exon 5) had a reduced ability to inhibit this ATPase activity when compared with wild type troponin (which contains TnT3). Interestingly, fibers containing these isoforms also showed less relaxation suggesting that exon 5 of cardiac TnT affects the ability of Tn to inhibit force development and ATPase activity. These results suggest that the different N-terminal TnT isoforms would produce different functional properties in the heart that would directly affect myocardial contraction.


Molecular & Cellular Proteomics | 2007

Mammalian Proteasome Subpopulations with Distinct Molecular Compositions and Proteolytic Activities

Oliver Drews; Robert Wildgruber; Chenggong Zong; Ute Sukop; Mikkel Nissum; Gerhard Weber; Aldrin V. Gomes; Peipei Ping

The proteasome-dependent protein degradation participates in multiple essential cellular processes. Modulation of proteasomal activities may alter cardiac function and disease phenotypes. However, cardiovascular studies reported thus far have yielded conflicting results. We hypothesized that a contributing factor to the contradicting literature may be caused by existing proteasome heterogeneity in the myocardium. In this investigation, we provide the very first direct demonstration of distinct proteasome subpopulations in murine hearts. The cardiac proteasome subpopulations differ in their molecular compositions and proteolytic activities. Furthermore they were distinguished from proteasome subpopulations identified in murine livers. The study was facilitated by the development of novel protocols for in-solution isoelectric focusing of multiprotein complexes in a laminar flow that support an average resolution of 0.04 pH units. Utilizing these protocols, the majority of cardiac proteasome complexes displayed an isoelectric point of 5.26 with additional subpopulations focusing in the range from pH 5.10 to 5.33. In contrast, the majority of hepatic 20 S proteasomes had a pI of 5.05 and focused from pH 5.01 to 5.29. Importantly proteasome subpopulations degraded specific model peptides with different turnover rates. Among cardiac subpopulations, proteasomes with an approximate pI of 5.21 showed 40% higher trypsin-like activity than those with pI 5.28. Distinct proteasome assembly may be a contributing factor to variations in proteolytic activities because proteasomes with pI 5.21 contained 58% less of the inducible subunit β2i compared with those with pI 5.28. In addition, dephosphorylation of 20 S proteasomes demonstrated that besides molecular composition posttranslational modifications largely contribute to their pI values. These data suggest the possibility of mixed 20 S proteasome assembly, a departure from the currently hypothesized two subpopulations: constitutive and immuno forms. The identification of multiple distinct proteasome subpopulations in heart provides key mechanistic insights for achieving selective and targeted regulation of this essential protein degradation machinery. Thus, proteasome subpopulations may serve as novel therapeutic targets in the myocardium.


Iubmb Life | 2002

The Role of Troponins in Muscle Contraction

Aldrin V. Gomes; James D. Potter; Danuta Szczesna-Cordary

Troponin (Tn) is the sarcomeric Ca 2+ regulator for striated (skeletal and cardiac) muscle contraction. On binding Ca 2+ Tn transmits information via structural changes throughout the actin‐tropomyosin filaments, activating myosin ATPase activity and muscle contraction. Although the Tn‐mediated regulation of striated muscle contraction is now well understood, the role of different Tn isoforms in these processes is the subject of intensive investigations. This review addresses the physiological significance of the multiple Tn isoforms in skeletal and cardiac muscles as well as their role in the regulation of contraction.


Circulation-cardiovascular Genetics | 2009

Proteomics, Metabolomics, and Immunomics on Microparticles Derived From Human Atherosclerotic Plaques

Manuel Mayr; David Grainger; Ursula Mayr; Aurélie S. Leroyer; Guy Lesèche; Anissa Sidibe; Olivier Herbin; Xiaoke Yin; Aldrin V. Gomes; Bassetti Madhu; John R. Griffiths; Qingbo Xu; Alain Tedgui; Chantal M. Boulanger

Background—Microparticles (MPs) with procoagulant activity are present in human atherosclerosis, but no detailed information is available on their composition. Methods and Results—To obtain insights into the role of MPs in atherogenesis, MP proteins were identified by tandem mass spectrometry, metabolite profiles were determined by high-resolution nuclear magnetic resonance spectroscopy, and antibody reactivity was assessed against combinatorial antigen libraries. Plaque MPs expressed surface antigens consistent with their leukocyte origin, including major histocompatibility complex classes I and II, and induced a dose-dependent stimulatory effect on T-cell proliferation. Notably, taurine, the most abundant free organic acid in human neutrophils, which scavenges myeloperoxidase-catalyzed free radicals, was highly enriched in plaque MPs. Moreover, fluorescent labeling of proteins on the MP surface suggested immunoglobulins to be trapped inside, which was confirmed by flow cytometry analysis on permeabilized and nonpermeabilized plaque MPs. Colabeling for CD14 and IgG established that more than 90% of the IgG containing MPs were CD14+, indicating a macrophage origin. Screening against an antigen library revealed that the immunologic profiles of antibodies in MPs were similar to those found in plaques but differed profoundly from antibodies in plasma and unexpectedly, showed strong reactions with oligosaccharide antigens, in particular blood group antigen A. Conclusions—This study provides the first evidence that immunoglobulins are present within MPs derived from plaque macrophages, that the portfolio of plaque antibodies is different from circulating antibodies in plasma, and that anticarbohydrate antibodies are retained in human atherosclerotic lesions.


Journal of Biological Chemistry | 2001

Familial Hypertrophic Cardiomyopathy Mutations in the Regulatory Light Chains of Myosin Affect Their Structure, Ca2+Binding, and Phosphorylation

Danuta Szczesna; Debalina Ghosh; Qi Li; Aldrin V. Gomes; Georgianna Guzman; Carlos Arana; Gang Zhi; James T. Stull; James D. Potter

The effect of the familial hypertrophic cardiomyopathy mutations, A13T, F18L, E22K, R58Q, and P95A, found in the regulatory light chains of human cardiac myosin has been investigated. The results demonstrate that E22K and R58Q, located in the immediate extension of the helices flanking the regulatory light chain Ca2+ binding site, had dramatically altered Ca2+ binding properties. The K Cavalue for E22K was decreased by ∼17-fold compared with the wild-type light chain, and the R58Q mutant did not bind Ca2+. Interestingly, Ca2+ binding to the R58Q mutant was restored upon phosphorylation, whereas the E22K mutant could not be phosphorylated. In addition, the α-helical content of phosphorylated R58Q greatly increased with Ca2+ binding. The A13T mutation, located near the phosphorylation site (Ser-15) of the human cardiac regulatory light chain, had 3-fold lowerK Ca than wild-type light chain, whereas phosphorylation of this mutant increased the Ca2+ affinity 6-fold. Whereas phosphorylation of wild-type light chain decreased its Ca2+ affinity, the opposite was true for A13T. The α-helical content of the A13T mutant returned to the level of wild-type light chain upon phosphorylation. The phosphorylation and Ca2+ binding properties of the regulatory light chain of human cardiac myosin are important for physiological function, and alteration any of these could contribute to the development of hypertrophic cardiomyopathy.


Journal of Biological Chemistry | 2002

Functional analysis of a troponin I (R145G) mutation associated with familial hypertrophic cardiomyopathy

Rosalyn Lang; Aldrin V. Gomes; Jiaju Zhao; Philippe R. Housmans; Todd Miller; James D. Potter

Familial hypertrophic cardiomyopathy has been associated with several mutations in the gene encoding human cardiac troponin I (HCTnI). A missense mutation in the inhibitory region of TnI replaces an arginine residue at position 145 with a glycine and cosegregates with the disease. Results from several assays indicate that the inhibitory function of HCTnIR145G is significantly reduced. When HCTnIR145G was incorporated into whole troponin, TnR145G(HCTnT·HCTnIR145G·HCTnC), only partial inhibition of the actin-tropomyosin-myosin ATPase activity was observed in the absence of Ca2+ compared with wild type Tn (HCTnT·HCTnI·HCTnC). Maximal activation of actin-tropomyosin-myosin ATPase in the presence of Ca2+ was also decreased in TnR145G when compared with Tn. Using skinned cardiac muscle fibers, we determined that in comparison with the wild type complex 1) the complex containing HCTnIR145G only inhibited 84% of Ca2+-unregulated force, 2) the recovery of Ca2+-activated force was decreased, and 3) there was a significant increase in the Ca2+ sensitivity of force development. Computer modeling of troponin C and I variables predicts that the primary defect in TnI caused by these mutations would lead to diastolic dysfunction. These results suggest that severe diastolic dysfunction and somewhat decreased contractility would be prominent clinical features and that hypertrophy could arise as a compensatory mechanism.

Collaboration


Dive into the Aldrin V. Gomes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ziyou Cui

University of California

View shared research outputs
Top Co-Authors

Avatar

Peipei Ping

University of California

View shared research outputs
Top Co-Authors

Avatar

Qian Xu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenggong Zong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sue C. Bodine

University of California

View shared research outputs
Top Co-Authors

Avatar

Susan Nguyen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge