Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alec J. Hirsch is active.

Publication


Featured researches published by Alec J. Hirsch.


Journal of Virology | 2007

West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis.

Guruprasad R. Medigeshi; Alissa M. Lancaster; Alec J. Hirsch; Thomas Briese; W. Ian Lipkin; Victor R. DeFilippis; Klaus Früh; Peter W. Mason; Janko Nikolich-Zugich; Jay A. Nelson

ABSTRACT West Nile virus (WNV)-mediated neuronal death is a hallmark of WNV meningitis and encephalitis. However, the mechanisms of WNV-induced neuronal damage are not well understood. We investigated WNV neuropathogenesis by using human neuroblastoma cells and primary rat hippocampal neurons. We observed that WNV activates multiple unfolded protein response (UPR) pathways, leading to transcriptional and translational induction of UPR target genes. We evaluated the role of the three major UPR pathways, namely, inositol-requiring enzyme 1-dependent splicing of X box binding protein 1 (XBP1) mRNA, activation of activating transcription factor 6 (ATF6), and protein kinase R-like endoplasmic reticulum (ER) kinase-dependent eukaryotic initiation factor 2α (eIF2α) phosphorylation, in WNV-infected cells. We show that XBP1 is nonessential or can be replaced by other UPR pathways in WNV replication. ATF6 was rapidly degraded by proteasomes, consistent with induction of ER stress by WNV. We further observed a transient phosphorylation of eIF2α and induction of the proapoptotic cyclic AMP response element-binding transcription factor homologous protein (CHOP). WNV-infected cells exhibited a number of apoptotic phenotypes, such as (i) induction of growth arrest and DNA damage-inducible gene 34, (ii) activation of caspase-3, and (iii) cleavage of poly(ADP-ribose) polymerase. The expression of WNV nonstructural proteins alone was sufficient to induce CHOP expression. Importantly, WNV grew to significantly higher viral titers in chop−/− mouse embryonic fibroblasts (MEFs) than in wild-type MEFs, suggesting that CHOP-dependent premature cell death represents a host defense mechanism to limit viral replication that might also be responsible for the widespread neuronal loss observed in WNV-infected neuronal tissue.


Journal of Virology | 2008

West Nile Virus Entry Requires Cholesterol-Rich Membrane Microdomains and Is Independent of αvβ3 Integrin

Guruprasad R. Medigeshi; Alec J. Hirsch; Daniel N. Streblow; Janko Nikolich-Zugich; Jay A. Nelson

ABSTRACT West Nile virus (WNV) has been the leading cause of viral encephalitis in the United States since 1999. The endocytic processes involved in the internalization of infectious WNV by various cell types are not well characterized, and the involvement of cholesterol-rich membrane microdomains, or lipid rafts, in the life cycle of WNV has not been investigated previously. In this study, we found that the depletion of cellular cholesterol levels by brief treatment with methyl-β-cyclodextrin resulted in a 100-fold reduction of the titers of infectious WNV released into the culture supernatant, as well as a reduction in the number of WNV genome copies in the cholesterol-depleted cells. The addition of exogenous cholesterol to cholesterol-depleted cells reversed this effect. Cholesterol depletion postinfection did not affect WNV growth, suggesting that the effect occurs at the level of WNV entry. We also showed that while WNV entry did not require αvβ3 integrin and focal adhesion kinase, WNV particles failed to be internalized by cholesterol-depleted cells. Finally, we showed the colocalization of the WNV envelope protein and cholera toxin B, which is internalized in a lipid raft-dependent pathway, in microdomain clusters at the plasma membrane. These data suggest that WNV utilizes lipid rafts during initial stages of internalization and that the lipid rafts may contain a factor(s) that may enhance WNV endocytosis.


Journal of Experimental Medicine | 2009

Key role of T cell defects in age-related vulnerability to West Nile virus.

James D. Brien; Jennifer L. Uhrlaub; Alec J. Hirsch; Clayton A. Wiley; Janko Nikolich-Žugich

West Nile virus (WNV) infection causes a life-threatening meningoencephalitis that becomes increasingly more prevalent over the age of 50 and is 40–50× more prevalent in people over the age of 70, compared with adults under the age of 40. In a mouse model of age-related vulnerability to WNV, we demonstrate that death correlates with increased viral titers in the brain and that this loss of virus control with age was the result of defects in the CD4 and CD8 T cell response against WNV. Specific age-related defects in T cell responses against dominant WNV epitopes were detected at the level of cytokine and lytic granule production, each of which are essential for resistance against WNV, and in the ability to generate multifunctional anti-WNV effector T cells, which are believed to be critical for robust antiviral immunity. In contrast, at the peak of the response, old and adult T cells exhibited superimposable peptide sensitivity. Most importantly, although the adult CD4 or CD8 T cells readily protected immunodeficient mice upon adoptive transfer, old T cells of either subset were unable to provide WNV-specific protection. Consistent with a profound qualitative and quantitative defect in T cell immunity, old brains contained at least 12× fewer total effector CD8 T cells compared with adult mice at the peak of brain infection. These findings identify potential targets for immunomodulation and treatment to combat lethal WNV infection in the elderly.


PLOS Pathogens | 2017

Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues

Alec J. Hirsch; Jessica L. Smith; Nicole Haese; Rebecca Broeckel; Christopher J. Parkins; Craig N. Kreklywich; Victor R. DeFilippis; Michael Denton; Patricia P. Smith; William B. Messer; Lois M. A. Colgin; Rebecca M. Ducore; Peta L. Grigsby; Jon D. Hennebold; Tonya Swanson; Alfred W. Legasse; Michael K. Axthelm; Rhonda MacAllister; Clayton A. Wiley; Jay A. Nelson; Daniel N. Streblow

Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1–7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.


Journal of Virology | 2005

The Src family kinase c-Yes is required for maturation of West Nile virus particles

Alec J. Hirsch; Guruprasad R. Medigeshi; Heather Meyers; Victor R. DeFilippis; Klaus Früh; Thomas Briese; W. Ian Lipkin; Jay A. Nelson

ABSTRACT The role of cellular genes in West Nile virus (WNV) replication is not well understood. Examination of cellular transcripts upregulated during WNV infection revealed an increase in the expression of the src family kinase (SFK) c-Yes. WNV-infected cell lines treated with the SFK inhibitor PP2 demonstrated a 2- to 4-log decrease in viral titers, suggesting that SFK activity is required for completion of the viral replication cycle. RNA interference mediated knock-down of c-Yes, but not c-Src, and similarly reduced virus yield, specifically implicating c-Yes in WNV production. Interestingly, PP2 treatment did not reduce intracellular levels of either viral RNA or protein, suggesting that the drug does not act on the early stages of replication. However, endoglycosidase H (endoH) digestion of the viral envelope (E) glycoprotein revealed that the acquisition of endoH-resistant glycans by E, but not endogenous major histocompatibility complex class I, was reduced in PP2-treated cells, demonstrating that E specifically does not traffic beyond the endoplasmic reticulum in the absence of SFK activity. Electron microscopy further revealed that PP2-treated WNV-infected cells accumulated an increased number of virions in the ER compared to untreated cells. Therefore, we conclude that inhibition of SFK activity did not interfere with virus assembly but prevented transit of virions through the secretory pathway. These results identify c-Yes as a cellular protein that is involved in WNV assembly and egress.


Journal of Virology | 2004

Human Cytomegalovirus-Encoded G Protein-Coupled Receptor US28 Mediates Smooth Muscle Cell Migration through Gα12

Ryan Melnychuk; Daniel N. Streblow; Patricia P. Smith; Alec J. Hirsch; Dora Pancheva; Jay A. Nelson

ABSTRACT Coupling of G proteins to ligand-engaged chemokine receptors is the paramount event in G-protein-coupled receptor signal transduction. Previously, we have demonstrated that the human cytomegalovirus-encoded chemokine receptor US28 mediates human vascular smooth muscle cell (SMC) migration in response to either RANTES or monocyte chemoattractant protein 1. In this report, we identify the G proteins that couple with US28 to promote vascular SMC migration and identify other signaling molecules that play critical roles in this process. US28-mediated cellular migration was enhanced with the expression of the G-protein subunits Gα12 and Gα13, suggesting that US28 may functionally couple to these G proteins. In correlation with this observation, US28 was able to activate RhoA, a downstream effector of Gα12 and Gα13 in cell types with these G proteins but not in those without them and activation of RhoA was dependent on US28 stimulation with RANTES. In addition, inactivation of RhoA or the RhoA-associated kinase p160ROCK with a dominant-negative mutant of RhoA or the small molecule inhibitor Y27632, respectively, abrogated US28-induced SMC migration. The data presented here suggest that US28 functionally signals through Gα12 family G proteins and RhoA in a ligand-dependent manner and these signaling molecules are important for the ability of US28 to induce cellular migration.


Journal of Virology | 2012

Induction of the Cellular MicroRNA, Hs_154, by West Nile Virus Contributes to Virus-Mediated Apoptosis through Repression of Antiapoptotic Factors

Jessica L. Smith; Finn Grey; Jennifer L. Uhrlaub; Janko Nikolich-Zugich; Alec J. Hirsch

ABSTRACT MicroRNAs (miRNAs) are a class of noncoding small RNAs that regulate multiple cellular processes, as well as the replication and pathogenesis of many DNA viruses and some RNA viruses. Examination of cellular miRNA profiles in West Nile virus (WNV)-infected HEK293 and SK-N-MC cells revealed increased expression of multiple miRNA species. One of these miRNAs, Hs_154, was significantly induced not only in WNV-infected neuronal cells in culture but also in the central nervous system tissues of infected mice and, upon transfection, caused a significant reduction in viral replication. Analysis of mRNA transcripts enriched through immunoprecipitation of the RNA-induced silencing complex identified several transcripts that contain seed sequence matches to Hs_154 in their 3′ untranslated regions (UTRs). Two of these targets, the CCCTC-binding factor (CTCF) and the epidermal growth factor receptor (EGFR)-coamplified and overexpressed protein (ECOP/VOPP1) proteins display reduced expression in WNV-infected cells, and the 3′ UTRs of these transcripts were sufficient to cause downregulation of expression in infected cells or in cells transfected with Hs_154, findings consistent with miRNA targeting of these transcripts. CTCF and ECOP have been shown to be associated with cell survival, implicating miRNA-directed repression of these targets in WNV-induced cell death. Consistent with this hypothesis, expression of these genes in WNV-infected cells results in a reduction in the number of cells undergoing apoptosis. These observations suggest that induction of Hs_154 expression after WNV infection modulates the apoptotic response to WNV and that cellular miRNA expression can be quickly altered during WNV infection to control aspects of the host response.


Journal of Virology | 2009

West Nile Virus Capsid Degradation of Claudin Proteins Disrupts Epithelial Barrier Function

Guruprasad R. Medigeshi; Alec J. Hirsch; James D. Brien; Jennifer L. Uhrlaub; Peter W. Mason; Clayton A. Wiley; Janko Nikolich-Zugich; Jay A. Nelson

ABSTRACT During acute infection, West Nile virus (WNV) has been reported to infect a variety of cell types in various tissues of both experimentally and naturally infected hosts. Virus infects epithelial cells in the skin, kidney, intestine, and testes, although the importance of these findings is unclear. In the current study, we have observed that WNV infection of kidney tubules in mice coincides with the loss of expression of several members of the claudin family. Proteins of this family are often involved in epithelial barrier formation and function. WNV infection of epithelial cells in culture resulted in a decrease in the transepithelial electrical resistance, an increase in the efflux of mannitol across the monolayer, and a loss of intracellular levels of claudin-1 to -4. WNV capsid alone was sufficient for the degradation event, which was mediated through lysosomal proteases. Since epithelial cells are frequent sites of WNV infection, these observations imply a potential mechanism for virus dissemination and extraneural pathogenesis.


Journal of Virology | 2011

Inhibition of Dengue Virus Infections in Cell Cultures and in AG129 Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence

David A. Stein; Stuart T. Perry; Michael D. Buck; Christopher S. Oehmen; Matthew A. Fischer; Elizabeth A. Poore; Jessica L. Smith; Alissa M. Lancaster; Alec J. Hirsch; Mark K. Slifka; Jay A. Nelson; Sujan Shresta; Klaus Früh

ABSTRACT The dengue viruses (DENVs) exist as numerous genetic strains that are grouped into four antigenically distinct serotypes. DENV strains from each serotype can cause severe disease and threaten public health in tropical and subtropical regions worldwide. No licensed antiviral agent to treat DENV infections is currently available, and there is an acute need for the development of novel therapeutics. We found that a synthetic small interfering RNA (siRNA) (DC-3) targeting the highly conserved 5′ cyclization sequence (5′CS) region of the DENV genome reduced, by more than 100-fold, the titers of representative strains from each DENV serotype in vitro. To determine if DC-3 siRNA could inhibit DENV in vivo, an “in vivo-ready” version of DC-3 was synthesized and tested against DENV-2 by using a mouse model of antibody-dependent enhancement of infection (ADE)-induced disease. Compared with the rapid weight loss and 5-day average survival time of the control groups, mice receiving the DC-3 siRNA had an average survival time of 15 days and showed little weight loss for approximately 12 days. DC-3-treated mice also contained significantly less virus than control groups in several tissues at various time points postinfection. These results suggest that exogenously introduced siRNA combined with the endogenous RNA interference processing machinery has the capacity to prevent severe dengue disease. Overall, the data indicate that DC-3 siRNA represents a useful research reagent and has potential as a novel approach to therapeutic intervention against the genetically diverse dengue viruses.


Journal of Virology | 2014

Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling.

Jessica L. Smith; David A. Stein; David Shum; Matthew A. Fischer; Constantin Radu; Bhavneet Bhinder; Hakim Djaballah; Jay A. Nelson; Klaus Früh; Alec J. Hirsch

ABSTRACT Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same cellular pathways, may have therapeutic potential for the treatment of dengue virus infections.

Collaboration


Dive into the Alec J. Hirsch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfred W. Legasse

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Bhavneet Bhinder

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge