Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhavneet Bhinder is active.

Publication


Featured researches published by Bhavneet Bhinder.


Nature Biotechnology | 2012

Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression.

Gabsang Lee; Christina N. Ramirez; Hyesoo Kim; Nadja Zeltner; Becky Liu; Constantin Radu; Bhavneet Bhinder; Yong Jun Kim; In Young Choi; Bipasha Mukherjee-Clavin; Hakim Djaballah; Lorenz Studer

Patient-specific induced pluripotent stem cells (iPSCs) represent a novel system for modeling human genetic disease and could develop into a key drug discovery platform. We recently reported disease-specific phenotypes in iPSCs from familial dysautonomia (FD) patients. FD is a rare but fatal genetic disorder affecting neural crest lineages. Here we demonstrate the feasibility of performing a primary screen in FD-iPSC derived neural crest precursors. Out of 6,912 compounds tested we characterized 8 hits that rescue expression of IKBKAP, the gene responsible for FD. One of those hits, SKF-86466, is shown to induce IKBKAP transcription via modulation of intracellular cAMP levels and PKA dependent CREB phosphorylation. SKF-86466 also rescues IKAP protein expression and the disease-specific loss of autonomic neuron marker expression. Our data implicate alpha-2 adrenergic receptor activity in regulating IKBKAP expression and demonstrate that small molecule discovery in an iPSC-based disease model can identify candidate drugs for potential therapeutic intervention.Patient-specific induced pluripotent stem cells (iPSCs) represent a novel system for modeling human genetic disease and could provide a source of cells for large-scale drug-discovery screens. Here we demonstrate the feasibility of performing a primary screen in neural crest precursors derived from iPSCs that were generated from individuals with familial dysautonomia (FD), a rare, fatal genetic disorder affecting neural crest lineages. We tested 6,912 small-molecule compounds and characterized eight that rescued expression of IKBKAP, the gene responsible for FD. One of the hits, SKF-86466, was found to induce IKBKAP transcription through modulation of intracellular cAMP levels and PKA-dependent CREB phosphorylation. SKF-86466 also rescued IKAP protein expression and the disease-specific loss of autonomic neuronal marker expression. Our data implicate alpha-2 adrenergic receptor activity in regulating IKBKAP expression and demonstrate that small-molecule discovery using an iPSC-based disease model can identify candidate drugs for potential therapeutic intervention.


Molecular Cell | 2014

Asparagine Plays a Critical Role in Regulating Cellular Adaptation to Glutamine Depletion

Ji Zhang; Jing Fan; Sriram Venneti; Justin R. Cross; Toshimitsu Takagi; Bhavneet Bhinder; Hakim Djaballah; Masayuki Kanai; Emily H. Cheng; Alexander R. Judkins; Bruce R. Pawel; Julie E. Baggs; Sara Cherry; Joshua D. Rabinowitz; Craig B. Thompson

Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.


Cell Reports | 2014

Death Induced by CD95 or CD95 Ligand Elimination

Abbas Hadji; Paolo Ceppi; Andrea E. Murmann; Sonia Brockway; Abhinandan Pattanayak; Bhavneet Bhinder; Annika Hau; Shirley De Chant; Vamsi Parimi; Piotre Kolesza; Jo Anne S. Richards; Navdeep S. Chandel; Hakim Djaballah; Marcus E. Peter

CD95 (Fas/APO-1), when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue-specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE) is characterized by an increase in cell size, production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising way to kill cancer cells.


Combinatorial Chemistry & High Throughput Screening | 2013

Systematic analysis of RNAi reports identifies dismal commonality at gene-level and reveals an unprecedented enrichment in pooled shRNA screens.

Bhavneet Bhinder; Hakim Djaballah

RNA interference (RNAi) has opened promising avenues to better understand gene function. Though many RNAi screens report on the identification of genes, very few, if any, have been further studied and validated. Data discrepancy is emerging as one of RNAi main pitfalls. We reasoned that a systematic analysis of lethality-based screens, since they score for cell death, would examine the extent of hit discordance at inter-screen level. To this end, we developed a methodology for literature mining and overlap analysis of several screens using both siRNA and shRNA flavors, and obtained 64 gene lists censoring an initial list of 7,430 nominated genes. We further performed a comparative analysis first at a global level followed by hit re-assessment under much more stringent conditions. To our surprise, none of the hits overlapped across the board even for PLK1, which emerged as a strong candidate in siRNA screens; but only marginally in the shRNA ones. Furthermore, EIF5B emerges as the most common hit only in the shRNA screens. A highly unusual and unprecedented result was the observation that 5,269 out of 6,664 nominated genes (~80%) in the shRNA screens were exclusive to the pooled format, raising concerns as to the merits of pooled screens which qualify hits based on relative depletions, possibly due to multiple integrations per cell, data deconvolution or inaccuracies in intracellular processing causing off-target effects. Without golden standards in place, we would encourage the community to pay more attention to RNAi screening data analysis practices, bearing in mind that it is combinatorial in nature and one active siRNA duplex or shRNA hairpin per gene does not suffice credible hit nomination. Finally, we also would like to caution interpretation of pooled shRNA screening outcomes.


Journal of Virology | 2014

Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling.

Jessica L. Smith; David A. Stein; David Shum; Matthew A. Fischer; Constantin Radu; Bhavneet Bhinder; Hakim Djaballah; Jay A. Nelson; Klaus Früh; Alec J. Hirsch

ABSTRACT Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same cellular pathways, may have therapeutic potential for the treatment of dengue virus infections.


Combinatorial Chemistry & High Throughput Screening | 2012

An Image-Based Biosensor Assay Strategy to Screen for Modulators of the microRNA 21 Biogenesis Pathway

David Shum; Bhavneet Bhinder; Constantin Radu; Paul A. Calder; Christina N. Ramirez; Hakim Djaballah

microRNAs (miRNAs) are evolutionary conserved, small endogenous non-coding, RNA molecules. Although their mode of action has been extensively studied, little is known about their biogenesis. As their altered expression has been implicated in many diseases, small molecules that would modulate their expression are sought after. They are generated through the concerted action of several complexes which promote their transcription, maturation, export, trafficking, and loading of mature miRNA into silencing complexes. An increasing number of studies have suggested that each of these steps serves as a regulatory junction in the process, and therefore provides an intervention point. For this purpose, we have developed a simple image-based assay strategy to screen for such modulators. Here, we describe its successful implementation which combines the use of a microRNA 21 (miR-21) synthetic mimic together with an EGFP based reporter cell line, where its expression is under the control of miR-21, to monitor EGFP expression in a format suitable for HTS. The strategy was further validated using a small panel of known gene modulators of the miRNA pathway. A screen was performed in duplicate against a library of 6,912 compounds and identified 48 initial positives exhibiting enhanced EGFP fluorescence intensity. 42 compounds were found to be inherently fluorescent in the green channel leaving the remaining 6 as potential inhibitors and with a positive rate of 0.09%. Taken together, this validated strategy offers the opportunity to discover novel and specific inhibitors of the pathway through the screening of diverse chemical libraries.


Journal of Virology | 2013

Flaviviruses are sensitive to inhibition of thymidine synthesis pathways

Matthew A. Fischer; Jessica L. Smith; David Shum; David A. Stein; Christopher J. Parkins; Bhavneet Bhinder; Constantin Radu; Alec J. Hirsch; Hakim Djaballah; Jay A. Nelson; Klaus Früh

ABSTRACT Dengue virus has emerged as a global health threat to over one-third of humankind. As a positive-strand RNA virus, dengue virus relies on the host cell metabolism for its translation, replication, and egress. Therefore, a better understanding of the host cell metabolic pathways required for dengue virus infection offers the opportunity to develop new approaches for therapeutic intervention. In a recently described screen of known drugs and bioactive molecules, we observed that methotrexate and floxuridine inhibited dengue virus infections at low micromolar concentrations. Here, we demonstrate that all serotypes of dengue virus, as well as West Nile virus, are highly sensitive to both methotrexate and floxuridine, whereas other RNA viruses (Sindbis virus and vesicular stomatitis virus) are not. Interestingly, flavivirus replication was restored by folinic acid, a thymidine precursor, in the presence of methotrexate and by thymidine in the presence of floxuridine, suggesting an unexpected role for thymidine in flavivirus replication. Since thymidine is not incorporated into RNA genomes, it is likely that increased thymidine production is indirectly involved in flavivirus replication. A possible mechanism is suggested by the finding that p53 inhibition restored dengue virus replication in the presence of floxuridine, consistent with thymidine-less stress triggering p53-mediated antiflavivirus effects in infected cells. Our data reveal thymidine synthesis pathways as new and unexpected therapeutic targets for antiflaviviral drug development.


Journal of Biomolecular Screening | 2012

A High-Content Biosensor-Based Screen Identifies Cell-Permeable Activators and Inhibitors of EGFR Function: Implications in Drug Discovery

Christophe Antczak; Jeni P. Mahida; Bhavneet Bhinder; Paul A. Calder; Hakim Djaballah

Early success of kinase inhibitors has validated their use as drugs. However, discovery efforts have also suffered from high attrition rates due to lack of cellular activity. We reasoned that screening for such candidates in live cells would identify novel cell-permeable modulators for development. For this purpose, we have used our recently optimized epidermal growth factor receptor (EGFR) biosensor assay to screen for modulators of EGFR activity. Here, we report on its validation under high-throughput screening (HTS) conditions displaying a signal-to-noise ratio of 21 and a Z′ value of 0.56—attributes of a robust cell-based assay. We performed a pilot screen against a library of 6912 compounds demonstrating good reproducibility and identifying 82 inhibitors and 66 activators with initial hit rates of 1.2% and 0.95%, respectively. Follow-up dose-response studies revealed that 12 of the 13 known EGFR inhibitors in the library were confirmed as hits. ZM-306416, a vascular endothelial growth factor receptor (VEGFR) antagonist, was identified as a potent inhibitor of EGFR function. Flurandrenolide, beclomethasone, and ebastine were confirmed as activators of EGFR function. Taken together, our results validate this novel approach and demonstrate its utility in the discovery of novel kinase modulators with potential use in the clinic.


Combinatorial Chemistry & High Throughput Screening | 2014

A 1536-well fluorescence polarization assay to screen for modulators of the MUSASHI family of RNA-binding proteins.

Gerard Minuesa; Christophe Antczak; David Shum; Constantin Radu; Bhavneet Bhinder; Yue-Ming Li; Hakim Djaballah; Michael G. Kharas

RNA-binding proteins (RBPs) can act as stem cell modulators and oncogenic drivers, but have been largely ignored by the pharmaceutical industry as potential therapeutic targets for cancer. The MUSASHI (MSI) family has recently been demonstrated to be an attractive clinical target in the most aggressive cancers. Therefore, the discovery and development of small molecule inhibitors could provide a novel therapeutic strategy. In order to find novel compounds with MSI RNA binding inhibitory activity, we have developed a fluorescence polarization (FP) assay and optimized it for high throughput screening (HTS) in a 1536-well microtiter plate format. Using a chemical library of 6,208 compounds, we performed pilot screens, against both MSI1 and MSI2, leading to the identification of 7 molecules for MSI1, 15 for MSI2 and 5 that inhibited both. A secondary FP dose-response screen validated 3 MSI inhibitors with IC50 below 10 μM. Out of the 25 compounds retested in the secondary screen only 8 demonstrated optical interference due to high fluorescence. Utilizing a SYBR-based RNA electrophoresis mobility shift assay (EMSA), we further verified MSI inhibition of the top 3 compounds. Surprisingly, even though several aminoglycosides were present in the library, they failed to demonstrate MSI inhibitor activity challenging the concept that these compounds are pan-active against RBPs. In summary, we have developed an in vitro strategy to identify MSI specific inhibitors using an FP HTS platform, which will facilitate novel drug discovery for this class of RBPs.


Assay and Drug Development Technologies | 2013

An Arrayed Genome-Scale Lentiviral-Enabled Short Hairpin RNA Screen Identifies Lethal and Rescuer Gene Candidates

Bhavneet Bhinder; Christophe Antczak; Christina N. Ramirez; David Shum; Nancy Liu-Sullivan; Constantin Radu; Mark G. Frattini; Hakim Djaballah

RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder-Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general.

Collaboration


Dive into the Bhavneet Bhinder's collaboration.

Top Co-Authors

Avatar

Hakim Djaballah

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Shum

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Constantin Radu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina N. Ramirez

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Glorymar Ibáñez

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Calder

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge