Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Gomez Toledo is active.

Publication


Featured researches published by Alejandro Gomez Toledo.


Glycobiology | 2012

O-Mannose and O–N-acetyl galactosamine glycosylation of mammalian α-dystroglycan is conserved in a region-specific manner

Alejandro Gomez Toledo; Madalina Raducu; Jesús Cruces; Jonas Nilsson; Adnan Halim; Göran Larson; Ulla Rüetschi; Ammi Grahn

Defects in the O-linked glycosylation of the peripheral membrane protein α-dystroglycan (α-DG) are the main cause of several forms of congenital muscular dystrophies and thus the characterization of the glycosylation of α-DG is of great medical importance. A detailed investigation of the glycosylation pattern of the native α-DG protein is essential for the understanding of the biological processes related to human disease in which the protein is involved. To date, several studies have reported novel O-glycans and attachment sites on the mucin-like domain of mammalian α-DG with both similar and contradicting glycosylation patterns, indicating the species-specific O-glycosylation of mammalian α-DG. By applying a standardized purification scheme and subsequent glycoproteomic analysis of native α-DG from rabbit and human skeletal muscle biopsies and from cultured mouse C2C12 myotubes, we show that the O-glycosylation patterns of the mucin-like domain of native α-DG are conserved among mammalians in a region-specific manner.


Chemistry: A European Journal | 2016

Distinctive MS/MS Fragmentation Pathways of Glycopeptide-Generated Oxonium Ions Provide Evidence of the Glycan Structure.

Jin Yu; Manuel Schorlemer; Alejandro Gomez Toledo; Christian Pett; Carina Sihlbom; Göran Larson; Ulrika Westerlind; Jonas Nilsson

Post-translational glycosylation of proteins play key roles in cellular processes and the site-specific characterisation of glycan structures is critical to understanding these events. Given the challenges regarding identification of glycan isomers, glycoproteomic studies generally rely on the assumption of conserved biosynthetic pathways. However, in a recent study, we found characteristically different HexNAc oxonium ion fragmentation patterns that depend on glycan structure. Such patterns could be used to distinguish between glycopeptide structural isomers. To acquire a mechanistic insight, deuterium-labelled glycopeptides were prepared and analysed. We found that the HexNAc-derived m/z 126 and 144 oxonium ions, differing in mass by H2 O, had completely different structures and that high-mannose N-glycopeptides generated abundant Hex-derived oxonium ions. We describe the oxonium ion decomposition mechanisms and the relative abundance of oxonium ions as a function of collision energy for a number of well-defined glycan structures, which provide important information for future glycoproteomic studies.


Molecular & Cellular Proteomics | 2015

Identification of Chondroitin Sulfate Linkage Region Glycopeptides Reveals Prohormones as a Novel Class of Proteoglycans

Fredrik Noborn; Alejandro Gomez Toledo; Carina Sihlbom; Johan Lengqvist; Erik Fries; Lena Kjellén; Jonas Nilsson; Göran Larson

Vertebrates produce various chondroitin sulfate proteoglycans (CSPGs) that are important structural components of cartilage and other connective tissues. CSPGs also contribute to the regulation of more specialized processes such as neurogenesis and angiogenesis. Although many aspects of CSPGs have been studied extensively, little is known of where the CS chains are attached on the core proteins and so far, only a limited number of CSPGs have been identified. Obtaining global information on glycan structures and attachment sites would contribute to our understanding of the complex proteoglycan structures and may also assist in assigning CSPG specific functions. In the present work, we have developed a glycoproteomics approach that characterizes CS linkage regions, attachment sites, and identities of core proteins. CSPGs were enriched from human urine and cerebrospinal fluid samples by strong-anion-exchange chromatography, digested with chondroitinase ABC, a specific CS-lyase used to reduce the CS chain lengths and subsequently analyzed by nLC-MS/MS with a novel glycopeptide search algorithm. The protocol enabled the identification of 13 novel CSPGs, in addition to 13 previously established CSPGs, demonstrating that this approach can be routinely used to characterize CSPGs in complex human samples. Surprisingly, five of the identified CSPGs are traditionally defined as prohormones (cholecystokinin, chromogranin A, neuropeptide W, secretogranin-1, and secretogranin-3), typically stored and secreted from granules of endocrine cells. We hypothesized that the CS side chain may influence the assembly and structural organization of secretory granules and applied surface plasmon resonance spectroscopy to show that CS actually promotes the assembly of chromogranin A core proteins in vitro. This activity required mild acidic pH and suggests that the CS-side chains may also influence the self-assembly of chromogranin A in vivo giving a possible explanation to previous observations that chromogranin A has an inherent property to assemble in the acidic milieu of secretory granules.


Journal of Proteome Research | 2016

SweetNET: A Bioinformatics Workflow for Glycopeptide MS/MS Spectral Analysis.

Waqas Nasir; Alejandro Gomez Toledo; Fredrik Noborn; Jonas Nilsson; Mingxun Wang; Nuno Bandeira; Göran Larson

Glycoproteomics has rapidly become an independent analytical platform bridging the fields of glycomics and proteomics to address site-specific protein glycosylation and its impact in biology. Current glycopeptide characterization relies on time-consuming manual interpretations and demands high levels of personal expertise. Efficient data interpretation constitutes one of the major challenges to be overcome before true high-throughput glycopeptide analysis can be achieved. The development of new glyco-related bioinformatics tools is thus of crucial importance to fulfill this goal. Here we present SweetNET: a data-oriented bioinformatics workflow for efficient analysis of hundreds of thousands of glycopeptide MS/MS-spectra. We have analyzed MS data sets from two separate glycopeptide enrichment protocols targeting sialylated glycopeptides and chondroitin sulfate linkage region glycopeptides, respectively. Molecular networking was performed to organize the glycopeptide MS/MS data based on spectral similarities. The combination of spectral clustering, oxonium ion intensity profiles, and precursor ion m/z shift distributions provided typical signatures for the initial assignment of different N-, O- and CS-glycopeptide classes and their respective glycoforms. These signatures were further used to guide database searches leading to the identification and validation of a large number of glycopeptide variants including novel deoxyhexose (fucose) modifications in the linkage region of chondroitin sulfate proteoglycans.


Neuromuscular Disorders | 2014

Hereditary myopathy with early respiratory failure is associated with misfolding of the titin fibronectin III 119 subdomain

Carola Hedberg; Alejandro Gomez Toledo; Claes M. Gustafsson; Göran Larson; Anders Oldfors; Bertil Macao

Hereditary myopathy with early respiratory failure is a rare disease with muscle weakness and respiratory failure as early symptoms. Muscle pathology is characterized by the presence of multiple cytoplasmic bodies and other protein aggregates in muscle fibers. The disease is associated with mutations in the titin gene (TTN). All patients harbor mutations located in exon 343 in the TTN gene that codes for the fibronectin III domain 119 (FN3 119) in the 10th motif of the 11-element motif A-band super-repeat. We investigated how such disease-causing mutations affect the biochemical behavior of this titin domain. All five disease-causing amino acid changes analyzed by us (p.P30068R, p.C30071R, p.W30088R, p.W30088C and p.P30091L) resulted in impaired FN3 119 domain solubility. In contrast, amino acid changes associated with common SNPs (p.V30076I, p.R30107C and p.S30125F) did not have this effect. In silico analyses further support the notion that disease-causing mutations impair proper folding of the FN3 119 domain. The results suggest that hereditary myopathy with early respiratory failure is caused by defective protein folding.


Molecular & Cellular Proteomics | 2015

Positive Mode LC-MS/MS Analysis of Chondroitin Sulfate Modified Glycopeptides Derived from Light and Heavy Chains of The Human Inter-α-Trypsin Inhibitor Complex

Alejandro Gomez Toledo; Jonas Nilsson; Fredrik Noborn; Carina Sihlbom; Göran Larson

The inter-α-trypsin inhibitor complex is a macromolecular arrangement of structurally related heavy chain proteins covalently cross-linked to the chondroitin sulfate (CS) chain of the proteoglycan bikunin. The inter-α-trypsin inhibitor complex is abundant in plasma and associated with inflammation, kidney diseases, cancer and diabetes. Bikunin is modified at Ser-10 by a single low-sulfated CS chain of 23–55 monosaccharides with 4–9 sulfate groups. The innermost four monosaccharides (GlcAβ3Galβ3Galβ4Xylβ-O-) compose the linkage region, believed to be uniform with a 4-O-sulfation to the outer Gal. The cross-linkage region of the bikunin CS chain is located in the nonsulfated nonreducing end, (GalNAcβ4GlcAβ3)n, to which heavy chains (H1-H3) may be bound in GalNAc to Asp ester linkages. In this study we employed a glycoproteomics protocol to enrich and analyze light and heavy chain linkage and cross-linkage region CS glycopeptides derived from the IαI complex of human plasma, urine and cerebrospinal fluid samples. The samples were trypsinized, enriched by strong anion exchange chromatography, partially depolymerized with chondroitinase ABC and analyzed by LC-MS/MS using higher-energy collisional dissociation. The analyses demonstrated that the CS linkage region of bikunin is highly heterogeneous. In addition to sulfation of the Gal residue, Xyl phosphorylation was observed although exclusively in urinary samples. We also identified novel Neu5Ac and Fuc modifications of the linkage region as well as the presence of mono- and disialylated core 1 O-linked glycans on Thr-17. Heavy chains H1 and H2 were identified cross-linked to GalNAc residues one or two GlcA residues apart and H1 was found linked to either the terminal or subterminal GalNAc residues. The fragmentation behavior of CS glycopeptides under variable higher-energy collisional dissociation conditions displays an energy dependence that may be used to obtain complementary structural details. Finally, we show that the analysis of sodium adducts provides confirmatory information about the positions of glycan substituents.


Scientific Reports | 2016

Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans

Fredrik Noborn; Alejandro Gomez Toledo; Anders Green; Waqas Nasir; Carina Sihlbom; Jonas Nilsson; Göran Larson

Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.


Journal of the American Society for Mass Spectrometry | 2017

Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

Jonas Nilsson; Fredrik Noborn; Alejandro Gomez Toledo; Waqas Nasir; Carina Sihlbom; Göran Larson

AbstractPurification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl-O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides. Graphical Abstractᅟ


Journal of Biological Chemistry | 2018

Expanding the chondroitin glycoproteome of Caenorhabditis elegans

Fredrik Noborn; Alejandro Gomez Toledo; Waqas Nasir; Jonas Nilsson; Tabea Dierker; Lena Kjellén; Göran Larson

Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated functions evolved early in metazoan evolution.


Journal of Biological Chemistry | 2018

LC-MS/MS characterization of xyloside-primed glycosaminoglycans with cytotoxic properties reveals structural diversity and novel glycan modifications

Andrea Persson; Alejandro Gomez Toledo; Egor Vorontsov; Waqas Nasir; Daniel Willén; Fredrik Noborn; Ulf Ellervik; Katrin Mani; Jonas Nilsson; Göran Larson

Structural characterization of glycosaminoglycans remains a challenge but is essential for determining structure–function relationships between glycosaminoglycans and the biomolecules with which they interact and for gaining insight into the biosynthesis of glycosaminoglycans. We have recently reported that xyloside-primed chondroitin/dermatan sulfate derived from a human breast carcinoma cell line, HCC70, has cytotoxic effects and shown that it differs in disaccharide composition from nontoxic chondroitin/dermatan sulfate derived from a human breast fibroblast cell line, CCD-1095Sk. To further investigate the structural requirements for the cytotoxic effect, we developed a novel LC–MS/MS approach based on reversed-phase dibutylamine ion-pairing chromatography and negative-mode higher-energy collision dissociation and used it in combination with cell growth studies and disaccharide fingerprinting. This strategy enabled detailed structural characterization of linkage regions, internal oligosaccharides, and nonreducing ends, revealing not only differences between xyloside-primed chondroitin/dermatan sulfate from HCC70 cells and CCD-1095Sk cells, but also sialylation of the linkage region and previously undescribed methylation and sulfation of the nonreducing ends. Although the xyloside-primed chondroitin/dermatan sulfate from HCC70 cells was less complex in terms of presence and distribution of iduronic acid than that from CCD-1095Sk cells, both glucuronic acid and iduronic acid appeared to be essential for the cytotoxic effect. Our data have moved us one step closer to understanding the structure of the cytotoxic chondroitin/dermatan sulfate from HCC70 cells primed on xylosides and demonstrate the suitability of the LC–MS/MS approach for structural characterization of glycosaminoglycans.

Collaboration


Dive into the Alejandro Gomez Toledo's collaboration.

Top Co-Authors

Avatar

Göran Larson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Jonas Nilsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Fredrik Noborn

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Carina Sihlbom

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Waqas Nasir

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Lengqvist

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ammi Grahn

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anders Oldfors

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge