Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Waqas Nasir is active.

Publication


Featured researches published by Waqas Nasir.


Clinical Infectious Diseases | 2014

Both Lewis and Secretor Status Mediate Susceptibility to Rotavirus Infections in a Rotavirus Genotype–Dependent Manner

Johan Nordgren; Sumit Sharma; Filemon Bucardo; Waqas Nasir; Gökçe Günaydın; Djeneba Ouermi; Leon W. Nitiema; Sylvia Becker-Dreps; Lennart Hammarström; Göran Larson; Lennart Svensson

BACKGROUND The live oral rotavirus (RV) vaccines have shown a reduced efficacy in Africa. Recent in vitro studies have shown binding of the RV surface protein (VP4) to histo-blood group antigens (HBGAs) in an RV genotype-dependent manner, suggesting them to be putative receptors for RV. The diversity of HBGA phenotypes in different ethnic populations, combined with prevalence/absence of specific RV genotypes, led us to hypothesize whether the genetic variations in HBGAs in a population limit susceptibility to certain RV genotypes, plausibly leading to reduced vaccine efficacy. METHODS Association between HBGAs status and susceptibility to RV P genotypes was investigated in children in Burkina Faso and Nicaragua. In total, 242 children with diarrhea in Burkina Faso and Nicaragua were investigated, 93 of whom were RV positive. RESULTS In Burkina Faso, the P[8] RV strains (n = 27) infected only Lewis- and secretor-positive children (27/27; P < .0001), but no Lewis-negative children. In contrast, the P[6] strains (n = 27) infected predominantly Lewis-negative children (n = 18; P < .0001) but also Lewis-positive children, irrespective of their secretor status. The results from Nicaragua confirmed that all P[8]-infected children (n = 22) were secretor Lewis positive. CONCLUSIONS As VP4 of genotype P[8] is a component of current RV vaccines, our finding that Lewis-negative children are resistant to P[8] strains provides a plausible explanation for the reduced vaccine efficacy in populations with a high percentage of Lewis-negative individuals, such as in Africa. Furthermore, our findings provide a plausible explanation as to why P[6] RV strains are more common in Africa.


Angewandte Chemie | 2012

Norovirus GII.4 Virus-like Particles Recognize Galactosylceramides in Domains of Planar Supported Lipid Bilayers

Marta Bally; Gustaf E. Rydell; Raphael Zahn; Waqas Nasir; Christian Eggeling; Michael E. Breimer; Lennart Svensson; Fredrik Höök; Göran Larson

A sticky situation: Domain-dependent recognition of the glycosphingolipid galactosylceramide by norovirus-like particles (see picture; red/yellow) is shown using supported lipid bilayers (purple) as model membranes. Optimal ligand presentation is found to promote strong binding to GalCer. This presentation can be found at the edges of the glycosphingolipid-enriched domains (green) and binding is repressed in the absence of these domains.


Journal of Computer-aided Molecular Design | 2010

Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data

Chaitanya A. K. Koppisetty; Waqas Nasir; Francesco Strino; Gustaf E. Rydell; Göran Larson; Per-Georg Nyholm

Norovirus strains are known to cause recurring epidemics of winter vomiting disease. The crystal structure of the capsid protein of VA387, a representative of the clinically important GII.4 genocluster, was recently solved in complex with histo-blood group A- and B-trisaccharides. However, the VA387 strain is known to bind also to other natural carbohydrates for which detailed structural information of the complexes is not available. In this study we have computationally explored the fit of the VA387 with a set of naturally occurring carbohydrate ligands containing a terminal α1,2-linked fucose. MD simulations both with explicit and implicit solvent models indicate that type 1 and 3 extensions of the ABO-determinant including ALeb and BLeb pentasaccharides can be well accommodated in the site. Scoring with Glide XP indicates that the downstream extensions of the ABO-determinants give an increase in binding strength, although the α1,2-linked fucose is the single strongest interacting residue. An error was discovered in the geometry of the GalNAc-Gal moiety of the published crystal structure of the A-trisaccharide/VA387 complex. The present modeling of the complexes with histo-blood group A-active structures shows some contacts which provide insight into mutational data, explaining the involvement of I389 and Q331. Our results can be applicable in structure-based design of adhesion inhibitors of noroviruses.


Journal of Proteome Research | 2016

SweetNET: A Bioinformatics Workflow for Glycopeptide MS/MS Spectral Analysis.

Waqas Nasir; Alejandro Gomez Toledo; Fredrik Noborn; Jonas Nilsson; Mingxun Wang; Nuno Bandeira; Göran Larson

Glycoproteomics has rapidly become an independent analytical platform bridging the fields of glycomics and proteomics to address site-specific protein glycosylation and its impact in biology. Current glycopeptide characterization relies on time-consuming manual interpretations and demands high levels of personal expertise. Efficient data interpretation constitutes one of the major challenges to be overcome before true high-throughput glycopeptide analysis can be achieved. The development of new glyco-related bioinformatics tools is thus of crucial importance to fulfill this goal. Here we present SweetNET: a data-oriented bioinformatics workflow for efficient analysis of hundreds of thousands of glycopeptide MS/MS-spectra. We have analyzed MS data sets from two separate glycopeptide enrichment protocols targeting sialylated glycopeptides and chondroitin sulfate linkage region glycopeptides, respectively. Molecular networking was performed to organize the glycopeptide MS/MS data based on spectral similarities. The combination of spectral clustering, oxonium ion intensity profiles, and precursor ion m/z shift distributions provided typical signatures for the initial assignment of different N-, O- and CS-glycopeptide classes and their respective glycoforms. These signatures were further used to guide database searches leading to the identification and validation of a large number of glycopeptide variants including novel deoxyhexose (fucose) modifications in the linkage region of chondroitin sulfate proteoglycans.


Scientific Reports | 2016

Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans

Fredrik Noborn; Alejandro Gomez Toledo; Anders Green; Waqas Nasir; Carina Sihlbom; Jonas Nilsson; Göran Larson

Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.


Journal of Physical Chemistry B | 2015

Interaction of Virus-Like Particles with Vesicles Containing Glycolipids: Kinetics of Detachment

Waqas Nasir; Marta Bally; Vladimir P. Zhdanov; Göran Larson; Fredrik Höök

Many viruses interact with their host cells via glycosphingolipids (GSLs) and/or glycoproteins present on the outer cell membrane. This highly specific interaction includes virion attachment and detachment. The residence time determined by the detachment is particularly interesting, since it is directly related to internalization and infection as well as to virion egress and spreading. In an attempt to deepen the understanding of virion detachment kinetics, we have used total internal reflection fluorescence (TIRF) microscopy to probe the interaction between individual fluorescently labeled GSL-containing lipid vesicles and surface-bound virus-like particles (VLPs) of a norovirus genotype II.4 strain. The distribution of the VLP-vesicle residence time was investigated for seven naturally occurring GSLs, all of which are candidates for the not yet identified receptor(s) mediating norovirus entry into host cells. As expected for interactions involving multiple GSL binding sites at a viral capsid, the detachment kinetics displayed features typical for a broad activation-energy distribution for all GSLs. Detailed inspection of these distributions revealed significant differences among the different GSLs. The results are discussed in terms of strength of the interaction, vesicle size, as well as spatial distribution and clustering of GSLs in the vesicle membrane.


Virology | 2014

Parvovirus B19 VLP recognizes globoside in supported lipid bilayers.

Waqas Nasir; Jonas Nilsson; Sigvard Olofsson; Marta Bally; Gustaf E. Rydell

Studies have suggested that the glycosphingolipid globoside (Gb4Cer) is a receptor for human parvovirus B19. Virus-like particles bind to Gb4Cer on thin-layer chromatograms, but a direct interaction between the virus and lipid membrane-associated Gb4Cer has been debated. Here, we characterized the binding of parvovirus B19 VP1/VP2 virus-like particles to glycosphingolipids (i) on thin-layer chromatograms (TLCs) and (ii) incorporated into supported lipid bilayers (SLBs) acting as cell-membrane mimics. The binding specificities of parvovirus B19 determined in the two systems were in good agreement; the VLP recognized both Gb4Cer and the Forssman glycosphingolipid on TLCs and in SLBs compatible with the role of Gb4Cer as a receptor for this virus.


ACS Chemical Biology | 2017

Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes

Waqas Nasir; Martin Frank; Angelika Kunze; Marta Bally; Francisco Parra; Per-Georg Nyholm; Fredrik Höök; Göran Larson

Virus entry depends on biomolecular recognition at the surface of cell membranes. In the case of glycolipid receptors, these events are expected to be influenced by how the glycan epitope close to the membrane is presented to the virus. This presentation of membrane-associated glycans is more restricted than that of glycans in solution, particularly because of orientational constraints imposed on the glycolipid through its lateral interactions with other membrane lipids and proteins. We have developed and employed a total internal reflection fluorescence microscopy-based binding assay and a scheme for molecular dynamics (MD) membrane simulations to investigate the consequences of various glycan presentation effects. The system studied was histo-blood group antigen (HBGA) epitopes of membrane-bound glycosphingolipids (GSLs) derived from small intestinal epithelium of humans (type 1 chain) and dogs (type 2 chain) interacting with GII.4 norovirus-like particles. Our experimental results showed strong binding to all lipid-linked type 1 chain HBGAs but no or only weak binding to the corresponding type 2 chain HBGAs. This is in contrast to results derived from STD experiments with free HBGAs in solution where binding was observed for Lewis x. The MD data suggest that the strong binding to type 1 chain glycolipids was due to the well-exposed (1,2)-linked α-l-Fucp and (1,4)-linked α-l-Fucp residues, while the weaker binding or lack of binding to type 2 chain HBGAs was due to the very restricted accessibility of the (1,3)-linked α-l-Fucp residue when the glycolipid is embedded in a phospholipid membrane. Our results not only contribute to a general understanding of protein-carbohydrate interactions on model membrane surfaces, particularly in the context of virus binding, but also suggest a possible role of human intestinal GSLs as potential receptors for norovirus uptake.


Journal of the American Society for Mass Spectrometry | 2017

Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

Jonas Nilsson; Fredrik Noborn; Alejandro Gomez Toledo; Waqas Nasir; Carina Sihlbom; Göran Larson

AbstractPurification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl-O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides. Graphical Abstractᅟ


Journal of Biological Chemistry | 2018

Expanding the chondroitin glycoproteome of Caenorhabditis elegans

Fredrik Noborn; Alejandro Gomez Toledo; Waqas Nasir; Jonas Nilsson; Tabea Dierker; Lena Kjellén; Göran Larson

Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated functions evolved early in metazoan evolution.

Collaboration


Dive into the Waqas Nasir's collaboration.

Top Co-Authors

Avatar

Göran Larson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Jonas Nilsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fredrik Noborn

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Marta Bally

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Fredrik Höök

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carina Sihlbom

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge