Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro M. Reyes is active.

Publication


Featured researches published by Alejandro M. Reyes.


Journal of Biological Chemistry | 1996

Genistein Is a Natural Inhibitor of Hexose and Dehydroascorbic Acid Transport through the Glucose Transporter, GLUT1

Juan Carlos Vera; Alejandro M. Reyes; Juan G. Cárcamo; Fernando V. Velásquez; Coralia I. Rivas; Rong H. Zhang; Pablo Strobel; Rodrigo Iribarren; Howard I. Scher; Juan C. Slebe; David W. Golde

Genistein is a dietary-derived plant product that inhibits the activity of protein-tyrosine kinases. We show here that it is a potent inhibitor of the mammalian facilitative hexose transporter GLUT1. In human HL-60 cells, which express GLUT1, genistein inhibited the transport of dehydroascorbic acid, deoxyglucose, and methylglucose in a dose-dependent manner. Transport was not affected by daidzein, an inactive genistein analog that does not inhibit protein-tyrosine kinase activity, or by the general protein kinase inhibitor staurosporine. Genistein inhibited the uptake of deoxyglucose and dehydroascorbic acid in Chinese hamster ovary (CHO) cells overexpressing GLUT1 in a similar dose-dependent manner. Genistein also inhibited the uptake of deoxyglucose in human erythrocytes indicating that its effect on glucose transporter function is cell-independent. The inhibitory action of genistein on transport was instantaneous, with no additional effect observed in cells preincubated with it for various periods of time. Genistein did not alter the uptake of leucine by HL-60 cells, indicating that its inhibitory effect was specific for the glucose transporters. The inhibitory effect of genistein was of the competitive type, with a K of approximately 12 μM for inhibition of the transport of both methylglucose and deoxyglucose. Binding studies showed that genistein inhibited glucose-displaceable binding of cytochalasin B to GLUT1 in erythrocyte ghosts in a competitive manner, with a K of 7 μM. These data indicate that genistein inhibits the transport of dehydroascorbic acid and hexoses by directly interacting with the hexose transporter GLUT1 and interfering with its transport activity, rather than as a consequence of its known ability to inhibit protein-tyrosine kinases. These observations indicate that some of the many effects of genistein on cellular physiology may be related to its ability to disrupt the normal cellular flux of substrates through GLUT1, a hexose transporter universally expressed in cells, and is responsible for the basal uptake of glucose.


Journal of Cellular Biochemistry | 1998

Hexose transporter expression and function in mammalian spermatozoa: Cellular localization and transport of hexoses and vitamin C

Constanza Angulo; María Cecilia Rauch; Andrea Droppelmann; Alejandro M. Reyes; Juan C. Slebe; Fernando Delgado-López; Victor H. Guaiquil; Juan Carlos Vera; Ilona I. Concha

We analyzed the expression of hexose transporters in human testis and in human, rat, and bull spermatozoa and studied the uptake of hexoses and vitamin C in bull spermatozoa. Immunocytochemical and reverse transcription‐polymerase chain reaction analyses demonstrated that adult human testis expressed the hexose transporters GLUT1, GLUT2, GLUT3, GLUT4, and GLUT5. Immunoblotting experiments demonstrated the presence of proteins of about 50–70 kD reactive with anti‐GLUT1, GLUT2, GLUT3, and GLUT5 in membranes prepared from human spermatozoa, but no proteins reactive with GLUT4 antibodies were detected. Immunolocalization experiments confirmed the presence of GLUT1, GLUT2, GLUT3, GLUT5, and low levels of GLUT4 in human, rat, and bull spermatozoa. Each transporter isoform showed a typical subcellular localization in the head and the sperm tail. In the tail, GLUT3 and GLUT5 were present at the level of the middle piece in the three species examined, GLUT1 was present in the principal piece, and the localization of GLUT2 differed according of the species examined. Bull spermatozoa transported deoxyglucose, fructose, and the oxidized form of vitamin C, dehydroascorbic acid. Transport of deoxyglucose and dehydroascorbic acid was inhibited by cytochalasin B, indicating the direct participation of facilitative hexose transporters in the transport of both substrates by bull spermatozoa. Transport of fructose was not affected by cytochalasin B, which is consistent for an important role for GLUT5 in the transport of fructose in these cells. The data show that human, rat, and bull spermatozoa express several hexose transporter isoforms that allow for the efficient uptake of glucose, fructose, and dehydroascorbic acid by these cells. J. Cell. Biochem. 71:189–203, 1998.


Journal of Biological Chemistry | 2007

Mechanistic Insights and Functional Determinants of the Transport Cycle of the Ascorbic Acid Transporter SVCT2 ACTIVATION BY SODIUM AND ABSOLUTE DEPENDENCE ON BIVALENT CATIONS

Alejandro S. Godoy; Valeska Ormazabal; Gustavo Moraga-Cid; Felipe A. Zuñiga; Paula Sotomayor; Valeria Barra; Osmán Vásquez; Viviana P. Montecinos; Lorena Mardones; Catherine Guzmán; Marcelo Villagrán; Luis G. Aguayo; Sergio A. Onate; Alejandro M. Reyes; Juan G. Cárcamo; Coralia I. Rivas; Juan Carlos Vera

We characterized the human Na+-ascorbic acid transporter SVCT2 and developed a basic model for the transport cycle that challenges the current view that it functions as a Na+-dependent transporter. The properties of SVCT2 are modulated by Ca2+/Mg2+ and a reciprocal functional interaction between Na+ and ascorbic acid that defines the substrate binding order and the transport stoichiometry. Na+ increased the ascorbic acid transport rate in a cooperative manner, decreasing the transport Km without affecting the Vmax, thus converting a low affinity form of the transporter into a high affinity transporter. Inversely, ascorbic acid affected in a bimodal and concentration-dependent manner the Na+ cooperativity, with absence of cooperativity at low and high ascorbic acid concentrations. Our data are consistent with a transport cycle characterized by a Na+:ascorbic acid stoichiometry of 2:1 and a substrate binding order of the type Na+:ascorbic acid:Na+. However, SVCT2 is not electrogenic. SVCT2 showed an absolute requirement for Ca2+/Mg2+ for function, with both cations switching the transporter from an inactive into an active conformation by increasing the transport Vmax without affecting the transport Km or the Na+ cooperativity. Our data indicate that SVCT2 may switch between a number of states with characteristic properties, including an inactive conformation in the absence of Ca2+/Mg2+. At least three active states can be envisioned, including a low affinity conformation at Na+ concentrations below 20 mm and two high affinity conformations at elevated Na+ concentrations whose Na+ cooperativity is modulated by ascorbic acid. Thus, SVCT2 is a Ca2+/Mg2+-dependent transporter.


Free Radical Biology and Medicine | 2014

Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2

Carola Muñoz-Montesino; Francisco J. Roa; Eduardo Peña; Mauricio Ostria González; Kirsty Sotomayor; Eveling Inostroza; Carolina Muñoz; Iván González; Mafalda Maldonado; Carlos Soliz; Alejandro M. Reyes; Juan Carlos Vera; Coralia I. Rivas

Despite the fundamental importance of the redox metabolism of mitochondria under normal and pathological conditions, our knowledge regarding the transport of vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a mitochondrial low-affinity ascorbic acid transporter that molecularly corresponds to SVCT2, a member of the sodium-coupled ascorbic acid transporter family 2. The transporter SVCT1 is absent from HEK-293 cells. Confocal colocalization experiments with anti-SVCT2 and anti-organelle protein markers revealed that most of the SVCT2 immunoreactivity was associated with mitochondria, with minor colocalization at the endoplasmic reticulum and very low immunoreactivity at the plasma membrane. Immunoblotting of proteins extracted from highly purified mitochondrial fractions confirmed that SVCT2 protein was associated with mitochondria, and transport analysis revealed a sigmoidal ascorbic acid concentration curve with an apparent ascorbic acid transport Km of 0.6mM. Use of SVCT2 siRNA for silencing SVCT2 expression produced a major decrease in mitochondrial SVCT2 immunoreactivity, and immunoblotting revealed decreased SVCT2 protein expression by approximately 75%. Most importantly, the decreased protein expression was accompanied by a concomitant decrease in the mitochondrial ascorbic acid transport rate. Further studies using HEK-293 cells overexpressing SVCT2 at the plasma membrane revealed that the altered kinetic properties of mitochondrial SVCT2 are due to the ionic intracellular microenvironment (low in sodium and high in potassium), with potassium acting as a concentration-dependent inhibitor of SVCT2. We discarded the participation of two glucose transporters previously described as mitochondrial dehydroascorbic acid transporters; GLUT1 is absent from mitochondria and GLUT10 is not expressed in HEK-293 cells. Overall, our data indicate that intracellular SVCT2 is localized in mitochondria, is sensitive to an intracellular microenvironment low in sodium and high in potassium, and functions as a low-affinity ascorbic acid transporter. We propose that the mitochondrial localization of SVCT2 is a property shared across cells, tissues, and species.


Biochemistry | 2011

Hexose Transporter GLUT1 Harbors Several Distinct Regulatory Binding Sites for Flavones and Tyrphostins

Alejandra Pérez; Paola Ojeda; Lorena Ojeda; Mónica Salas; Coralia I. Rivas; Juan Carlos Vera; Alejandro M. Reyes

The facilitative hexose transporter GLUT1 activity is blocked by tyrosine kinase inhibitors that include natural products such as flavones and isoflavones and synthetic compounds such as tyrphostins, molecules that are structurally unrelated to the transported substrates [Vera, et al. (2001) Biochemistry, 40, 777-790]. Here we analyzed the interaction of GLUT1 with quercetin (a flavone), genistein (an isoflavone), and tyrphostin A47 and B46 to evaluate if they share one common or have several binding sites on the protein. Kinetic assays showed that genistein, quercetin, and tyrphostin B46 behave as competitive inhibitors of equilibrium exchange and zero-trans uptake transport and noncompetitive inhibitors of net sugar exit out of human red cells, suggesting that they interact with the external surface of the GLUT1 molecule. In contrast, tyrphostin A47 was a competitive inhibitor of equilibrium exchange and zero-trans exit transport and a noncompetitive inhibitor of net sugar entry into red cells, suggesting that it interacts with the cytoplasmic surface of the transporter. Genistein protected GLUT1 against iodide-elicited fluorescence quenching and also decreased the affinity of d-glucose for its external binding site, while quercetin and tyrphostins B46 and A47 promoted fluorescence quenching and did not affect the external d-glucose binding site. These findings are explained by a carrier that presents at least three binding sites for tyrosine kinase inhibitors, in which (i) genistein interacts with the transporter in a conformation that binds glucose on the external surface (outward-facing conformation), in a site which overlaps with the external binding site for d-glucose, (ii) quercetin and tyrphostin B46 interact with the GLUT1 conformation which binds glucose by the internal side of the membrane (inward-facing conformation), but to a site accessible from the external surface of the protein, and (iii) the binding site for tyrphostin A47 is accessible from the inner surface of GLUT1 by binding to the inward-facing conformation of the transporter. These data provide groundwork for a molecular understanding of how the tyrosine kinase inhibitors directly affect glucose transport in animal cells.


American Journal of Physiology-cell Physiology | 2012

Noncompetitive blocking of human GLUT1 hexose transporter by methylxanthines reveals an exofacial regulatory binding site

Paola Ojeda; Alejandra Pérez; Lorena Ojeda; Mauricio Vargas-Uribe; Coralia I. Rivas; Mónica Salas; Juan Carlos Vera; Alejandro M. Reyes

Glucose transporter (GLUT)1 has become an attractive target to block glucose uptake in malignant cells since most cancer cells overexpress GLUT1 and are sensitive to glucose deprivation. Methylxanthines are natural compounds that inhibit glucose uptake; however, the mechanism of inhibition remains unknown. Here, we used a combination of binding and glucose transport kinetic assays to analyze in detail the effects of caffeine, pentoxifylline, and theophylline on hexose transport in human erythrocytes. The displacement of previously bound cytochalasin B revealed a direct interaction between the methylxanthines and GLUT1. Methylxanthines behave as noncompetitive blockers (inhibition constant values of 2-3 mM) in exchange and zero-trans efflux assays, whereas mixed inhibition with a notable uncompetitive component is observed in zero-trans influx assays (inhibition constant values of 5-12 mM). These results indicate that methylxanthines do not bind to either exofacial or endofacial d-glucose-binding sites but instead interact at a different site accessible by the external face of the transporter. Additionally, infinite-cis exit assays (Sen-Widdas assays) showed that only pentoxifylline disturbed d-glucose for binding to the exofacial substrate site. Interestingly, coinhibition assays showed that methylxanthines bind to a common site on the transporter. We concluded that there is a methylxanthine regulatory site on the external surface of the transporter, which is close but distinguishable from the d-glucose external site. Therefore, the methylxanthine moiety may become an attractive framework for the design of novel specific noncompetitive facilitative GLUT inhibitors.


American Journal of Physiology-cell Physiology | 2009

Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol

Alejandra Pérez; Paola Ojeda; Ximena Valenzuela; Marcela Ortega; Claudio Sánchez; Lorena Ojeda; Maite A. Castro; Juan G. Cárcamo; M. Cecilia Rauch; Ilona I. Concha; Coralia I. Rivas; Juan Carlos Vera; Alejandro M. Reyes

Gossypol is a natural disesquiterpene that blocks the activity of the mammalian facilitative hexose transporter GLUT1. In human HL-60 cells, which express GLUT1, Chinese hamster ovary cells overexpressing GLUT1, and human erythrocytes, gossypol inhibited hexose transport in a concentration-dependent fashion, indicating that blocking of GLUT1 activity is independent of cellular context. With the exception of red blood cells, the inhibition of cellular transport was instantaneous. Gossypol effect was specific for the GLUT1 transporter since it did not alter the uptake of nicotinamide by human erythrocytes. Gossypol affects the glucose-displaceable binding of cytochalasin B to GLUT1 in human erythrocyte ghost in a mixed noncompetitive way, with a K(i) value of 20 microM. Likewise, GLUT1 fluorescence was quenched approximately 80% by gossypol, while Stern-Volmer plots for quenching by iodide displayed increased slopes by gossypol addition. These effects on protein fluorescence were saturable and unaffected by the presence of D-glucose. Gossypol did not alter the affinity of D-glucose for the external substrate site on GLUT1. Kinetic analysis of transport revealed that gossypol behaves as a noncompetitive inhibitor of zero-trans (substrate outside but not inside) transport, but it acts as a competitive inhibitor of equilibrium-exchange (substrate inside and outside) transport, which is consistent with interaction at the endofacial surface, but not at the exofacial surface of the transporter. Thus, gossypol behaves as a quasi-competitive inhibitor of GLUT1 transport activity by binding to a site accessible through the internal face of the transporter, but it does not, in fact, compete with cytochalasin B binding. Our observations suggest that some effects of gossypol on cellular physiology may be related to its ability to disrupt the normal hexose flux through GLUT1, a transporter expressed in almost every kind of mammalian cell and responsible for the basal uptake of glucose.


American Journal of Physiology-cell Physiology | 2013

Resolution of the direct interaction with and inhibition of the human GLUT1 hexose transporter by resveratrol from its effect on glucose accumulation

Mónica Salas; Patricia Obando; Lorena Ojeda; Paola Ojeda; Alejandra Pérez; Mauricio Vargas-Uribe; Coralia I. Rivas; Juan Carlos Vera; Alejandro M. Reyes

Resveratrol acts as a chemopreventive agent for cancer and as a potential antiobesity and antidiabetic compound, by leading to reduced body fat and improved glucose homeostasis. The exact mechanisms involved in improving hyperglycemic state are not known, but most of the glucose uptake into mammalian cells is facilitated by the GLUT hexose transporters. Resveratrol is structurally similar to isoflavones such as genistein, which inhibit the glucose uptake facilitated by the GLUT1 hexose transporter. Here we examined the direct effects of resveratrol on glucose uptake and accumulation in HL-60 and U-937 leukemic cell lines, which express mainly GLUT1, under conditions that discriminate transport from the intracellular substrate phosphorylation/accumulation. Resveratrol blocks GLUT1-mediated hexose uptake and thereby affects substrate accumulation on these cells. Consequently, we characterized the mechanism involved in inhibition of glucose uptake in human red cells. Resveratrol inhibits glucose exit in human red cells, and the displacement of previously bound cytochalasin B revealed the direct interaction of resveratrol with GLUT1. Resveratrol behaves as a competitive blocker of glucose uptake under zero-trans exit and exchange kinetic assays, but it becomes a mixed noncompetitive blocker when zero-trans entry transport was assayed, suggesting that the binding site for resveratrol lies on the endofacial face of the transporter. We propose that resveratrol interacts directly with the human GLUT1 hexose transporter by binding to an endofacial site and that this interaction inhibits the transport of hexoses across the plasma membrane. This inhibition is distinct from the effect of resveratrol on the intracellular phosphorylation/accumulation of glucose.


Free Radical Biology and Medicine | 2012

Essential role of intracellular glutathione in controlling ascorbic acid transporter expression and function in rat hepatocytes and hepatoma cells

Lorena Mardones; Felipe A. Zuñiga; Marcelo Villagrán; Kirsty Sotomayor; Pamela Mendoza; David Escobar; Mauricio Ostria González; Valeska Ormazabal; Mafalda Maldonado; Gloria Oñate; Constanza Angulo; Ilona I. Concha; Alejandro M. Reyes; Juan G. Cárcamo; Valeria Barra; Juan Carlos Vera; Coralia I. Rivas

Although there is in vivo evidence suggesting a role for glutathione in the metabolism and tissue distribution of vitamin C, no connection with the vitamin C transport systems has been reported. We show here that disruption of glutathione metabolism with buthionine-(S,R)-sulfoximine (BSO) produced a sustained blockade of ascorbic acid transport in rat hepatocytes and rat hepatoma cells. Rat hepatocytes expressed the Na(+)-coupled ascorbic acid transporter-1 (SVCT1), while hepatoma cells expressed the transporters SVCT1 and SVCT2. BSO-treated rat hepatoma cells showed a two order of magnitude decrease in SVCT1 and SVCT2 mRNA levels, undetectable SVCT1 and SVCT2 protein expression, and lacked the capacity to transport ascorbic acid, effects that were fully reversible on glutathione repletion. Interestingly, although SVCT1 mRNA levels remained unchanged in rat hepatocytes made glutathione deficient by in vivo BSO treatment, SVCT1 protein was absent from the plasma membrane and the cells lacked the capacity to transport ascorbic acid. The specificity of the BSO treatment was indicated by the finding that transport of oxidized vitamin C (dehydroascorbic acid) and glucose transporter expression were unaffected by BSO treatment. Moreover, glutathione depletion failed to affect ascorbic acid transport, and SVCT1 and SVCT2 expression in human hepatoma cells. Therefore, our data indicate an essential role for glutathione in controlling vitamin C metabolism in rat hepatocytes and rat hepatoma cells, two cell types capable of synthesizing ascorbic acid, by regulating the expression and subcellular localization of the transporters involved in the acquisition of ascorbic acid from extracellular sources, an effect not observed in human cells incapable of synthesizing ascorbic acid.


Biochemical and Biophysical Research Communications | 1985

The reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase is related to a fructose 2,6-bisphosphate allosteric site

Alejandro M. Reyes; Elizabeth Hubert; Juan C. Slebe

Modification of a highly reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase with N-ethylmaleimide results in the loss of activation of the enzyme by monovalent cations. Low concentrations of fructose 2,6-bisphosphate or high (inhibitory) levels of fructose 1,6-bisphosphate protect the enzyme against the loss of monovalent cation activation, while non-inhibitory concentrations of the substrate gave partial protection. The allosteric inhibitor AMP markedly increases the reactivity of the cysteine residue. The results indicate that fructose 2,6-bisphosphate can protect the enzyme against the loss of potassium activation by binding to an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit the enzyme by binding to this allosteric site.

Collaboration


Dive into the Alejandro M. Reyes's collaboration.

Top Co-Authors

Avatar

Juan C. Slebe

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Alejandra Pérez

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Hubert

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Lorena Ojeda

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Marcelo Torres

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Marcia Costa

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Juan G. Cárcamo

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Mónica Salas

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Paola Ojeda

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Heide C. Ludwig

Austral University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge