Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Sosa-Peinado is active.

Publication


Featured researches published by Alejandro Sosa-Peinado.


PLOS Computational Biology | 2011

A Role for Both Conformational Selection and Induced Fit in Ligand Binding by the LAO Protein

Daniel-Adriano Silva; Gregory R. Bowman; Alejandro Sosa-Peinado; Xuhui Huang

Molecular recognition is determined by the structure and dynamics of both a protein and its ligand, but it is difficult to directly assess the role of each of these players. In this study, we use Markov State Models (MSMs) built from atomistic simulations to elucidate the mechanism by which the Lysine-, Arginine-, Ornithine-binding (LAO) protein binds to its ligand. We show that our model can predict the bound state, binding free energy, and association rate with reasonable accuracy and then use the model to dissect the binding mechanism. In the past, this binding event has often been assumed to occur via an induced fit mechanism because the proteins binding site is completely closed in the bound state, making it impossible for the ligand to enter the binding site after the protein has adopted the closed conformation. More complex mechanisms have also been hypothesized, but these have remained controversial. Here, we are able to directly observe roles for both the conformational selection and induced fit mechanisms in LAO binding. First, the LAO protein tends to form a partially closed encounter complex via conformational selection (that is, the apo protein can sample this state), though the induced fit mechanism can also play a role here. Then, interactions with the ligand can induce a transition to the bound state. Based on these results, we propose that MSMs built from atomistic simulations may be a powerful way of dissecting ligand-binding mechanisms and may eventually facilitate a deeper understanding of allostery as well as the prediction of new protein-ligand interactions, an important step in drug discovery.


Bioorganic & Medicinal Chemistry | 2009

Calmodulin inhibitors from the fungus Emericella sp.

Mario Figueroa; María C. González; Rogelio Rodríguez-Sotres; Alejandro Sosa-Peinado; Martín González-Andrade; Carlos M. Cerda-García-Rojas; Rachel Mata

Two new xanthones identified as 15-chlorotajixanthone hydrate (1) and 14-methoxytajixanthone (2) were isolated from an Emericella sp. strain 25379 along with shamixanthone (3) and tajixanthone hydrate (4). The stereostructures of 1 and 2 were elucidated by spectroscopic and molecular modeling methods. The absolute configuration at the stereogenic centers of 1 was established according to CD measurements. In the case of 2, however, the absolute configuration at C-20 and C-25 was designated as S and R, respectively, by Mosher ester methodology. Thereafter, the configuration at C-14 and C-15 of 2 was established as S and S, respectively by comparing the optical rotation and (1)H-(1)H coupling constant experimental values with those obtained through molecular modeling calculations at DFT B3LYP/DGDZVP level of theory for diasteroisomers 2a-2d. The activation of the calmodulin-sensitive cAMP phosphodiesterase (PDE1) was inhibited in the presence of 1-4 in a concentration-dependent manner. The effect of compounds 2 (IC(50)=5.54 microM) and 4 (IC(50)=5.62 microM) was comparable with that of chlorpromazine (CPZ; IC(50)=7.26 microM), a well known CaM inhibitor used as a positive control. The inhibition mechanism of both compounds was competitive with respect to CaM according to a kinetic study. A docking analysis with 2 and 4 using the AutoDock 4.0 program revealed that they interacted with CaM in the same pocket as trifluoropiperazine (TFP).


Archives of Biochemistry and Biophysics | 2010

Catalase evolved to concentrate H2O2 at its active site

Laura Dominguez; Alejandro Sosa-Peinado; Wilhelm Hansberg

Catalase is a homo-tetrameric enzyme that has its heme active site deeply buried inside the protein. Its only substrate, hydrogen peroxide (H2O2), reaches the heme through a 45 A-long channel. Large-subunit catalases, but not small-subunit catalases, have a loop (gate loop) that interrupts the major channel. Two accesses lead to a gate that opens the final section of the channel to the heme; gates from the R-related subunits are interconnected. Using molecular dynamic simulations of the Neurospora crassa catalase-1 tetramer in a box of water (48,600 molecules) or 6M H2O2, it is shown that the number of H2O2 molecules augments at the surface of the protein and in the accesses to the gate and the final section of the channel. Increase in H2O2 is due to the prevalence and distribution of amino acids that have an increased residency for H2O2 (mainly histidine, proline and charged residues), which are localized at the protein surface and the accesses to the gate. In the section of the channel from the heme to the gate, turnover rate of water molecules was faster than for H2O2 and increased residence sites for water and H2O2 were determined. In the presence of H2O2, the exclusion of water molecules from a specific site suggests a mechanism that could contend with the competing activity of water, allowing for catalase high kinetic efficiency.


Journal of Medicinal Chemistry | 2011

Development of the fluorescent biosensor hCalmodulin (hCaM)L39C-monobromobimane(mBBr)/V91C-mBBr, a novel tool for discovering new calmodulin inhibitors and detecting calcium.

Martín González-Andrade; José Rivera-Chávez; Alejandro Sosa-Peinado; Mario Figueroa; Rogelio Rodríguez-Sotres; Rachel Mata

A novel, sensible, and specific fluorescent biosensor of human calmodulin (hCaM), namely hCaM L39C-mBBr/V91C-mBBr, was constructed. The biosensor was useful for detecting ligands with opposing fluorescent signals, calcium ions (Ca(2+)) and CaM inhibitors in solution. Thus, the device was successfully applied to analyze the allosteric effect of Ca(2+) on trifluoroperazine (TFP) binding to CaM (Ca(2+)K(d) = 0.24 μM ± 0.03 with a stoichiometry 4.10 ± 0.15; TFPK(d) ∼ 5.74-0.53 μM depending on the degree of saturation of Ca(2+), with a stoichiometry of 2:1). In addition, it was suitable for discovering additional xanthones (5, 6, and 8) with anti-CaM properties from the fungus Emericella 25379. The affinity of 1-5, 7, and 8 for the complex (Ca(2+))(4)-CaM was excellent because their experimental K(d)s were in the nM range (4-498 nM). Docking analysis predicted that 1-8 bind to CaM at sites I, III, and IV as does TFP.


Analytical Biochemistry | 2009

An alternative assay to discover potential calmodulin inhibitors using a human fluorophore-labeled CaM protein.

Martín González-Andrade; Mario Figueroa; Rogelio Rodríguez-Sotres; Rachel Mata; Alejandro Sosa-Peinado

This article describes the development of a new fluorescent-engineered human calmodulin, hCaM M124C-mBBr, useful in the identification of potential calmodulin (CaM) inhibitors. An hCaM mutant containing a unique cysteine residue at position 124 on the protein was expressed, purified, and chemically modified with the fluorophore monobromobimane (mBBr). The fluorophore-labeled protein exhibited stability and functionality to the activation of calmodulin-sensitive cAMP phosphodiesterase (PDE1) similar to wild-type hCaM. The hCaM M124C-mBBr is highly sensitive to detecting inhibitor interaction given that it showed a quantum efficiency of 0.494, approximately 20 times more than the value for wild-type hCaM, and a large spectral change ( approximately 80% quenching) when the protein is in the presence of saturating inhibitor concentrations. Two natural products previously shown to act as CaM inhibitors, malbrancheamide (1) and tajixanthone hydrate (2), and the well-known CaM inhibitor chlorpromazine (CPZ) were found to quench the hCaM M124C-mBBr fluorescence, and the IC(50) values were comparable to those obtained for the wild-type protein. These results support the use of hCaM M124C-mBBr as a fluorescence biosensor and a powerful analytical tool in the high-throughput screening demanded by the pharmaceutical and biotechnology industries.


Journal of Molecular Biology | 2002

On the Role of the Conformational Flexibility of the Active-site Lid on the Allosteric Kinetics of Glucosamine-6-phosphate Deaminase

Ismael Bustos-Jaimes; Alejandro Sosa-Peinado; Enrique Rudiño-Piñera; Eduardo Horjales; Mario L. Calcagno

The active site of glucosamine-6-phosphate deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) has a complex lid formed by two antiparallel beta-strands connected by a helix-loop segment (158-187). This motif contains Arg172, which is a residue involved in binding the substrate in the active-site, and three residues that are part of the allosteric site, Arg158, Lys160 and Thr161. This dual binding role of the motif forming the lid suggests that it plays a key role in the functional coupling between active and allosteric sites. Previous crystallographic work showed that the temperature coefficients of the active-site lid are very large when the enzyme is in its T allosteric state. These coefficients decrease in the R state, thus suggesting that this motif changes its conformational flexibility as a consequence of the allosteric transition. In order to explore the possible connection between the conformational flexibility of the lid and the function of the deaminase, we constructed the site-directed mutant Phe174-Ala. Phe174 is located at the C-end of the lid helix and its side-chain establishes hydrophobic interactions with the remainder of the enzyme. The crystallographic structure of the T state of Phe174-Ala deaminase, determined at 2.02 A resolution, shows no density for the segment 162-181, which is part of the active-site lid (PDB 1JT9). This mutant form of the enzyme is essentially inactive in the absence of the allosteric activator, N-acetylglucosamine-6-P although it recovers its activity up to the wild-type level in the presence of this ligand. Spectrometric and binding studies show that inactivity is due to the inability of the active-site to bind ligands when the allosteric site is empty. These data indicate that the conformational flexibility of the active-site lid critically alters the binding properties of the active site, and that the occupation of the allosteric site restores the lid conformational flexibility to a functional state.


Proteins | 2011

Conformational dynamics of L-lysine, L-arginine, L-ornithine binding protein reveals ligand-dependent plasticity.

Daniel-Adriano Silva; Lenin Domínguez-Ramírez; Arturo Rojo-Domínguez; Alejandro Sosa-Peinado

The molecular basis of multiple ligand binding affinity for amino acids in periplasmic binding proteins (PBPs) and in the homologous domain for class C G‐protein coupled receptors is an unsolved question. Here, using unrestrained molecular dynamic simulations, we studied the ligand binding mechanism present in the L‐lysine, L‐arginine, L‐ornithine binding protein. We developed an analysis based on dihedral angles for the description of the conformational changes upon ligand binding. This analysis has an excellent correlation with each of the two main movements described by principal component analysis (PCA) and its more convenient than RMSD measurements to describe the differences in the conformational ensembles observed. Furthermore, an analysis of hydrogen bonds showed specific interactions for each ligand studied as well as the ligand interaction with the aromatic residues Tyr‐14 and Phe‐52. Using uncharged histidine tautomers, these interactions are not observed. On the basis of these results, we propose a model in which hydrogen bond interactions place the ligand in the correct orientation to induce a cation–π interaction with Tyr‐14 and Phe‐52 thereby stabilizing the closed state. Our results also show that this protein adopts slightly different closed conformations to make available specific hydrogen bond interactions for each ligand thus, allowing a single mechanism to attain multiple ligand specificity. These results shed light on the experimental evidence for ligand‐dependent conformational plasticity not explained by the previous crystallographic data. Proteins 2011.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2011

Fluorescence, circular dichroism, NMR, and docking studies of the interaction of the alkaloid malbrancheamide with calmodulin

Mario Figueroa; Martín González-Andrade; Alejandro Sosa-Peinado; Abraham Madariaga-Mazón; Federico del Río-Portilla; María C. González; Rachel Mata

A new malbrancheamide analogue, isomalbrancheamide B (3), along with three known compounds, malbrancheamide (1), isomalbrancheamide (2), and premalbrancheamide (4), were isolated in higher yields from the alkaloid fraction of the fungus Malbranchea aurantiaca. The interaction of the alkaloids 1–4 with calmodulin (CaM) was analyzed using different enzymatic, fluorescence, spectroscopic, nuclear magnetic resonance (NMR), and molecular modelling techniques. On the basis of the enzymatic and fluorescence experiments, malbrancheamides 1–3 are classical CaM inhibitors. Compound 4, however, did not quench the extrinsic fluorescence of the CaM biosensor indicating that it could be a functional inhibitor. Circular dichroism, NMR, and molecular modelling studies revealed that 1 binds to CaM in the same hydrophobic pocket than the chlorpromazine and trifluoperazine, two classical CaM inhibitors. Thus, malbrancheamide and related monochlorinated analogues are compounds with a high potential for the development of new therapeutic agents, involving CaM as their molecular target.


Frontiers in Plant Science | 2014

Structural and functional basis for starch binding in the SnRK1 subunits AKINβ2 and AKINβγ

Alejandra Ávila-Castañeda; Ana Ruiz-Gayosso; Alejandro Sosa-Peinado; Eleazar Martínez-Barajas; Patricia Coello

Specialized carbohydrate-binding domains, the Starch-Binding Domain (SBD) and the Glycogen Binding Domain (GBD), are motifs of approximately 100 amino acids directly or indirectly associated with starch or glycogen metabolism. Members of the regulatory β subunit of the heterotrimeric complex AMPK/SNF1/SnRK1 contain an SBD or GBD. In Arabidopsis thaliana, the β regulatory subunit AKINβ2 and a γ-type subunit, AKINβγ, also have an SBD. In this work, we compared the SBD of AKINβ2 and AKINβγ with the GBD present in rat AMPKβ1 and demonstrated that they conserved the same overall topology. The majority of the amino acids identified in the protein-carbohydrate interactions in the rat AMPKβ1 are conserved in the two plant proteins. In AKINβγ, there is an insertion of three amino acids that creates a loop adjacent to one of the conserved tryptophan residues. Functionally, the SBD from AKINβγ and AKINβ2 could bind starch, but there was an important difference in the association when an amylose/amylopectin (A/A) mixture was used. The physiological relevance of binding to starch was clear for AKINβγ, because immunolocalization experiments identified this protein inside the chloroplast. SnRK1 activity was not affected by the addition of A/A to the reaction mixture. However, addition of starch inhibited the activity 85%. Furthermore, proteins associated with A/A and starch in an in vitro-binding assay accounted for 10–20% of total SnRK1 kinase activity. Interestingly, the identification of the SnRK1 subunits associated to the protein-carbohydrate complex indicated that only the catalytic subunits, AKIN10 and AKIN11, and the regulatory subunit AKINβγ were present. These results suggest that a dimer formed between either catalytic subunit and AKINβγ could be associated with the A/A mixture in its active form but the same subunits are inactivated when binding to starch.


Chemistry & Biodiversity | 2013

Calmodulin Inhibitors from Aspergillus stromatoides

Martín González-Andrade; Paulina Del Valle; Martha L. Macías-Rubalcava; Alejandro Sosa-Peinado; María C. González; Rachel Mata

An organic extract was prepared from the culture medium and mycelia of the marine fungus Aspergillus stromatoides Raper & Fennell. The extract was fractionated via column chromatography, and the resulting fractions were tested for their abilities to quench the fluorescence of the calmodulin (CaM) biosensor hCaM M124C‐mBBr. From the active fraction, emodin (1) and ω‐hydroxyemodin (2) were isolated as CaM inhibitors. Anthraquinones 1 and 2 quenched the fluorescence of the hCaM M124C‐mBBr biosensor in a concentration‐dependent manner with Kd values of 0.33 and 0.76 μM, respectively. The results were compared with those of chlorpromazine (CPZ), a classical inhibitor of CaM, with a Kd value of 1.25 μM. Docking analysis revealed that 1 and 2 bind to the same pocket of CPZ. The CaM inhibitor properties of 1 and 2 were correlated with some of their reported biological properties. Citrinin (3), methyl 8‐hydroxy‐6‐methyl‐9‐oxo‐9H‐xanthene‐1‐carboxylate (4), and coniochaetone A (5) were also isolated in the present study. The X‐ray structure of 5 is reported for the first time.

Collaboration


Dive into the Alejandro Sosa-Peinado's collaboration.

Top Co-Authors

Avatar

Martín González-Andrade

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Rogelio Rodríguez-Sotres

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Rachel Mata

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Arturo Rojo-Domínguez

Universidad Autónoma Metropolitana

View shared research outputs
Top Co-Authors

Avatar

Mario Figueroa

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Abraham Madariaga-Mazón

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Laura Dominguez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

María C. González

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge