Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Dominguez is active.

Publication


Featured researches published by Laura Dominguez.


Archives of Biochemistry and Biophysics | 2012

Fungal catalases: Function, phylogenetic origin and structure

Wilhelm Hansberg; Rodolfo Salas-Lizana; Laura Dominguez

Most fungi have several monofunctional heme-catalases. Filamentous ascomycetes (Pezizomycotina) have two types of large-size subunit catalases (L1 and L2). L2-type are usually induced by different stressors and are extracellular enzymes; those from the L1-type are not inducible and accumulate in asexual spores. L2 catalases are important for growth and the start of cell differentiation, while L1 are required for spore germination. In addition, pezizomycetes have one to four small-size subunit catalases. Yeasts (Saccharomycotina) do not have large-subunit catalases and generally have one peroxisomal and one cytosolic small-subunit catalase. Small-subunit catalases are inhibited by substrate while large-subunit catalases are activated by H(2)O(2). Some small-subunit catalases bind NADPH preventing inhibition by substrate. We present a phylogenetic analysis revealing one or two events of horizontal gene transfers from Actinobacteria to a fungal ancestor before fungal diversification, as the origin of large-size subunit catalases. Other possible horizontal transfers of small- and large-subunit catalases genes were detected and one from bacteria to the fungus Malassezia globosa was analyzed in detail. All L2-type catalases analyzed presented a secretion signal peptide. Mucorales preserved only L2-type catalases, with one containing a secretion signal if two or more are present. Basidiomycetes have only L1-type catalases, all lacking signal peptide. Fungal small-size catalases are related to animal catalases and probably evolved from a common ancestor. However, there are several groups of small-size catalases. In particular, a conserved group of fungal sequences resemble plant catalases, whose phylogenetic origin was traced to a group of bacteria. This group probably has the heme orientation of plant catalases and could in principle bind NADPH. From almost a hundred small-subunit catalases only one fourth has a peroxisomal localization signal and in fact many fungi lack a peroxisomal catalase. Catalases have a deep buried active site and H(2)O(2) has to go through a long passage to reach it. In all known structures of catalases, the major channel has common features, particularly in the straight and narrow final section that is positioned perpendicular to the heme. Besides, other conserved channels are present in catalases whose function remains to be elucidated. One of these channels intercommunicates the major channels from the two R-related subunits. In three of the four known large-subunits catalase structures, the heme b is partially transformed into heme d. In Neurospora crassa, this occurs in vivo and is related to oxidative stress conditions in which singlet oxygen is produced. A pure source of singlet oxygen oxidizes catalases purified from different sources and singlet oxygen quenchers prevent oxidation. A second modification is observed in N. crassa catalase-1, in which the tyrosine that forms the fifth coordination bound to the heme iron makes a covalent bond with a vicinal cysteine, similarly to the tyrosine-histidine bonding found in Escherichia coli hydroperoxidase II. Molecular dynamics has been used to determine how H(2)O(2) reaches the enzyme active site and how products exit the protein. We found that the bottleneck of the major channel seems to disappear in water and is wide open in the presence of substrate. Amino acid residues exhibiting an increased residence time for H(2)O(2) are abundant at the protein surface and at the entrances to the major channel. The net effect of this is an increased H(2)O(2)/H(2)O ratio in the major channel. Once in the final section of this channel, H(2)O(2) is retained and tends to occupy specific sites while water molecules have a higher turnover rate and occupy different sites. Despite the intense study of catalases our knowledge of this enzyme is still limited and in need of new studies and different approaches.


Archives of Biochemistry and Biophysics | 2010

Catalase evolved to concentrate H2O2 at its active site

Laura Dominguez; Alejandro Sosa-Peinado; Wilhelm Hansberg

Catalase is a homo-tetrameric enzyme that has its heme active site deeply buried inside the protein. Its only substrate, hydrogen peroxide (H2O2), reaches the heme through a 45 A-long channel. Large-subunit catalases, but not small-subunit catalases, have a loop (gate loop) that interrupts the major channel. Two accesses lead to a gate that opens the final section of the channel to the heme; gates from the R-related subunits are interconnected. Using molecular dynamic simulations of the Neurospora crassa catalase-1 tetramer in a box of water (48,600 molecules) or 6M H2O2, it is shown that the number of H2O2 molecules augments at the surface of the protein and in the accesses to the gate and the final section of the channel. Increase in H2O2 is due to the prevalence and distribution of amino acids that have an increased residency for H2O2 (mainly histidine, proline and charged residues), which are localized at the protein surface and the accesses to the gate. In the section of the channel from the heme to the gate, turnover rate of water molecules was faster than for H2O2 and increased residence sites for water and H2O2 were determined. In the presence of H2O2, the exclusion of water molecules from a specific site suggests a mechanism that could contend with the competing activity of water, allowing for catalase high kinetic efficiency.


Experimental Eye Research | 1986

Retinal degeneration induced by taurine deficiency in light-deprived cats.

Herminia Pasantes-Morales; Laura Dominguez; M Campomanes; Pablo Pacheco

The effect of light deprivation on the retinal degeneration induced by taurine deficiency in cats was examined in this study. After 25 weeks of taurine-free diet, taurine levels in plasma, retina, heart, cerebellar and cerebral cortex decrease to 16-25% of normal. The ERG a-wave and b-amplitudes also decreased as a consequence of the taurine-free diet. After 15 weeks of taurine-free diet the b-wave amplitude decreased to 36-41% of normal, and after 25 weeks both the a-wave and the b-wave were undetectable. The structure of the outer segments of photoreceptors, examined by electron microscopy appeared disturbed in the taurine-deficient cats, showing disorientation of the disk membranes, vesiculation and swelling. The time course of taurine deficiency and the retinal degeneration pattern were observed in all cats fed the taurine-free diet, irrespective of the conditions of lighting. These results indicate that the morphological and functional disturbances induced by taurine deficiency in cats are independent of the physiological stimulation of the retina by light.


Journal of Chemical Physics | 2011

Protein folding in a reverse micelle environment: The role of confinement and dehydration

Anna Victoria Martinez; Susan C. DeSensi; Laura Dominguez; Eva Rivera; John E. Straub

Characterization of the molecular interactions that stabilize the folded state of proteins including hydrogen bond formation, solvation, molecular crowding, and interaction with membrane environments is a fundamental goal of theoretical biophysics. Inspired by recent experimental studies by Gai and co-workers, we have used molecular dynamics simulations to explore the structure and dynamics of the alanine-rich AKA(2) peptide in bulk solution and in a reverse micelle environment. The simulated structure of the reverse micelle shows substantial deviations from a spherical geometry. The AKA(2) peptide is observed to (1) remain in a helical conformation within a spherically constrained reverse micelle and (2) partially unfold when simulated in an unconstrained reverse micelle environment, in agreement with experiment. While aqueous solvation is found to stabilize the N- and C-termini random coil portions of the peptide, the helical core region is stabilized by significant interaction between the nonpolar surface of the helix and the aliphatic chains of the AOT surfactant. The results suggest an important role for nonpolar peptide-surfactant and peptide-lipid interactions in stabilizing helical geometries of peptides in reverse micelle environments.


Journal of the American Chemical Society | 2014

Structural Heterogeneity in Transmembrane Amyloid Precursor Protein Homodimer Is a Consequence of Environmental Selection

Laura Dominguez; Leigh Foster; Stephen C. Meredith; John E. Straub; D. Thirumalai

The 99 amino acid C-terminal fragment of amyloid precursor protein (C99), consisting of a single transmembrane (TM) helix, is known to form homodimers. Homodimers can be processed by γ-secretase to produce amyloid-β (Aβ) protein, which is implicated in Alzheimer’s disease (AD). While knowledge of the structure of C99 homodimers is of great importance, experimental NMR studies and simulations have produced varying structural models, including right-handed and left-handed coiled-coils. In order to investigate the structure of this critical protein complex, simulations of the C9915–55 homodimer in POPC membrane bilayer and DPC surfactant micelle environments were performed using a multiscale approach that blends atomistic and coarse-grained models. The C9915–55 homodimer adopts a dominant right-handed coiled-coil topology consisting of three characteristic structural states in a bilayer, only one of which is dominant in the micelle. Our structural study, which provides a self-consistent framework for understanding a number of experiments, shows that the energy landscape of the C99 homodimer supports a variety of slowly interconverting structural states. The relative importance of any given state can be modulated through environmental selection realized by altering the membrane or micelle characteristics.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein

Laura Dominguez; Leigh Foster; John E. Straub; Dave Thirumalai

Significance Aggregation of proteins of known sequence is linked to a variety of neurodegenerative disorders. Familial mutations in the amyloid precursor protein (APP), from which the amyloid β (Aβ) protein is excised, are associated with early onset of Alzheimer’s disease. The structures of APP-C99 dimers and the associated stability as well as the monomer–dimer equilibrium are critically influenced by membrane composition. Using a multiscale modeling approach, we have investigated the influence of varying lipid composition on the structure of homodimers of an APP-C99 congener peptide. Besides resolving contradicting experimental results, we demonstrate that membrane lipid composition dramatically influences the relative populations of competing homodimer structures in a way that is linked to the recognition and processing of APP-C99 by γ-secretase. Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer’s disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923−55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C9923−55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C991−55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β protein, on membrane thickness and lipid composition.


Journal of the American Chemical Society | 2016

Combined Molecular Dynamics Simulations and Experimental Studies of the Structure and Dynamics of Poly-Amido-Saccharides

Stacy L. Chin; Qing Lu; Eric L. Dane; Laura Dominguez; Christopher J. McKnight; John E. Straub; Mark W. Grinstaff

Poly-amido-saccharides (PAS) are carbohydrate-based, enantiopure synthetic polymers in which sugar repeat units are joined by amide linkages. This unique and relatively rigid pyranose backbone contributes to their defined helical secondary structure and remarkable chemical properties. Glucose- (glc-) and galactose- (gal-) PAS 10-mer structures are synthesized and investigated with molecular dynamics (MD) simulations and experimental measurements. Quantum mechanical DFT energy minimization calculations, as well as experimental observables including circular dichroism, (1)H,(13)C-HSQC, and (1)H,(1)H-NOESY 2D-NMR studies, validated the all-atom simulation models produced using a modified CHARMM force field. Water radial distribution functions show distinct differences in the glc- and gal-PAS systems that correlate well with observed differences in solubility between gal-PASs and glc-PASs. The computational analysis and MD simulations are in good agreement with experimental results, validating the proposed models as reliable representations of novel glc- and gal-PASs.


Journal of Physical Chemistry B | 2015

Role of Charge and Solvation in the Structure and Dynamics of Alanine-Rich Peptide AKA2 in AOT Reverse Micelles.

Anna Victoria Martinez; Edyta Małolepsza; Laura Dominguez; Qing Lu; John E. Straub

The propensity of peptides to form α-helices has been intensely studied using theory, computation, and experiment. Important model peptides for the study of the coil-to-helix transition have been alanine–lysine (AKA) peptides in which the lysine residues are placed on opposite sides of the helix avoiding charge repulsion while enhancing solubility. In this study, the effects of capped versus zwitterionic peptide termini on the secondary structure of alanine-rich peptides in reverse micelles are explored. The reverse micelles are found to undergo substantial shape fluctuations, a property observed in previous studies of AOT reverse micelles in the absence of solvated peptide. The peptides are observed to interact with water, as well as the AOT surfactant, including interactions between the nonpolar residues and the aliphatic surfactant tails. Computation of IR spectra for the amide I band of the peptide allows for direct comparison with experimental spectra. The results demonstrate that capped AKA2 peptides form more stable α helices than zwitterionic AKA2 peptides in reverse micelles. The rotational anisotropy decay of water is found to be distinctly different in the presence or absence of peptide within the reverse micelle, suggesting that the introduction of peptide significantly alters the number of free waters within the reverse micelle nanopool. However, neither the nature of the peptide termini (capped or charged) nor the degree of peptide helicity is found to significantly alter the balance of interactions between the peptides and the environment. Observed changes in the degree of helicity in AKA2 peptides in bulk solution and in reverse micelle environments result from changes in peptide confinement and hydration as well as direct nonpolar and polar interactions with the water–surfactant interface.


Proteins | 2014

How catalase recognizes H2O2 in a sea of water

Laura Dominguez; Alejandro Sosa-Peinado; Wilhelm Hansberg

Monofunctional heme‐catalases have been studied for many decades but there is still an incomplete understanding of why such a large tetrameric protein with deeply buried active sites is required to accomplish such a simple reaction as H2O2 dismutation. Catalase accomplishes this reaction at a high rate although water at 55 M is expected to compete with H2O2 for the enzymes active site. Using molecular dynamics simulations we addressed the question as to how catalase selects H2O2 in water. Selection is accomplished through different mechanisms: higher residence time of H2O2 in the vicinity of certain prevalent amino acid residues at the protein surface and substrate channel, coordinated motion of the main passage amino acids that is increased in the presence of H2O2, a gate valve mechanism consisting of the motion of two contiguous phenylalanine residues that drive water molecules out of the final section of the substrate channel, a hydrophobic barrier before the active site that was crossed more easily by H2O2 which kept most of its hydrogen bonds while passing, and finally an increased residence time for H2O2 at the active site. These mechanisms, based on the physicochemical differences between H2O2 and water, provide an explanation as to why such a large tetrameric protein with deeply buried active sites is required to accomplish efficient H2O2 dismutation. Proteins 2014; 82:45–56.


Proteins | 2015

Extension of a protein docking algorithm to membranes and applications to amyloid precursor protein dimerization

Shruthi Viswanath; Laura Dominguez; Leigh Foster; John E. Straub; Ron Elber

Novel adjustments are introduced to the docking algorithm, DOCK/PIERR, for the purpose of predicting structures of transmembrane protein complexes. Incorporating knowledge about the membrane environment is shown to significantly improve docking accuracy. The extended version of DOCK/PIERR is shown to perform comparably to other leading docking packages. This membrane version of DOCK/PIERR is applied to the prediction of coiled‐coil homodimer structures of the transmembrane region of the C‐terminal peptide of amyloid precursor protein (C99). Results from MD simulation of the C99 homodimer in POPC bilayer and docking are compared. Docking results are found to capture key aspects of the homodimer ensemble, including the existence of three topologically distinct conformers. Furthermore, the extended version of DOCK/PIERR is successful in capturing the effects of solvation in membrane and micelle. Specifically, DOCK/PIERR reproduces essential differences in the homodimer ensembles simulated in POPC bilayer and DPC micelle, where configurational entropy and surface curvature effects bias the handedness and topology of the homodimer ensemble. Proteins 2015; 83:2170–2185.

Collaboration


Dive into the Laura Dominguez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Aguayo-Ortiz

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Wilhelm Hansberg

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandro Sosa-Peinado

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alicia Hernández-Campos

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Rafael Castillo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucia Cano-González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge