Alejandro Valbuena
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandro Valbuena.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Alejandro Valbuena; Javier Oroz; Rubén Hervás; Andrés M. Vera; David Rodriguez; Margarita Menéndez; Joanna I. Sulkowska; Marek Cieplak; Mariano Carrión-Vázquez
Protein mechanostability is a fundamental biological property that can only be measured by single-molecule manipulation techniques. Such studies have unveiled a variety of highly mechanostable modules (mainly of the Ig-like, β-sandwich type) in modular proteins subjected to mechanical stress from the cytoskeleton and the metazoan cell–cell interface. Their mechanostability is often attributed to a “mechanical clamp” of secondary structure (a patch of backbone hydrogen bonds) fastening their ends. Here we investigate the nanomechanics of scaffoldins, an important family of scaffolding proteins that assembles a variety of cellulases into the so-called cellulosome, a microbial extracellular nanomachine for cellulose adhesion and degradation. These proteins anchor the microbial cell to cellulose substrates, which makes their connecting region likely to be subjected to mechanical stress. By using single-molecule force spectroscopy based on atomic force microscopy, polyprotein engineering, and computer simulations, here we show that the cohesin I modules from the connecting region of cellulosome scaffoldins are the most robust mechanical proteins studied experimentally or predicted from the entire Protein Data Bank. The mechanostability of the cohesin modules studied correlates well with their mechanical kinetic stability but not with their thermal stability, and it is well predicted by computer simulations, even coarse-grained. This extraordinary mechanical stability is attributed to 2 mechanical clamps in tandem. Our findings provide the current upper limit of protein mechanostability and establish shear mechanical clamps as a general structural/functional motif widespread in proteins putatively subjected to mechanical stress. These data have important implications for the scaffoldin physiology and for protein design in biotechnology and nanotechnology.
PLOS Biology | 2012
Rubén Hervás; Javier Oroz; Albert Galera-Prat; Oscar Goñi; Alejandro Valbuena; Andrés M. Vera; Àngel Gómez-Sicilia; Fernando Losada-Urzáiz; Vladimir N. Uversky; Margarita Menéndez; Douglas V. Laurents; Marta Bruix; Mariano Carrión-Vázquez
A single-molecule study reveals that neurotoxic proteins share common structural features that may trigger neurodegeneration, thus identifying new targets for therapy and diagnosis.
Journal of Biological Chemistry | 2011
Javier Oroz; Alejandro Valbuena; Andrés M. Vera; Jesús Mendieta; Paulino Gómez-Puertas; Mariano Carrión-Vázquez
Cadherins form a large family of calcium-dependent cell-cell adhesion receptors involved in development, morphogenesis, synaptogenesis, differentiation, and carcinogenesis through signal mechanotransduction using an adaptor complex that connects them to the cytoskeleton. However, the molecular mechanisms underlying mechanotransduction through cadherins remain unknown, although their extracellular region (ectodomain) is thought to be critical in this process. By single molecule force spectroscopy, molecular dynamics simulations, and protein engineering, here we have directly examined the nanomechanics of the C-cadherin ectodomain and found it to be strongly dependent on the calcium concentration. In the presence of calcium, the ectodomain extends through a defined (“canalized”) pathway that involves two mechanical resistance elements: a mechanical clamp from the cadherin domains and a novel mechanostable component from the interdomain calcium-binding regions (“calcium rivet”) that is abolished by magnesium replacement and in a mutant intended to impede calcium coordination. By contrast, in the absence of calcium, the mechanical response of the ectodomain becomes largely “decanalized” and destabilized. The cadherin ectodomain may therefore behave as a calcium-switched “mechanical antenna” with very different mechanical responses depending on calcium concentration (which would affect its mechanical integrity and force transmission capability). The versatile mechanical design of the cadherin ectodomain and its dependence on extracellular calcium facilitate a variety of mechanical responses that, we hypothesize, could influence the various adhesive properties mediated by cadherins in tissue morphogenesis, synaptic plasticity, and disease. Our work represents the first step toward the mechanical characterization of the cadherin system, opening the door to understanding the mechanical bases of its mechanotransduction.
ACS Nano | 2017
Pablo J. P. Carrillo; María Medrano; Alejandro Valbuena; Alicia Rodríguez-Huete; Milagros Castellanos; Rebeca Pérez; Mauricio G. Mateu
Single-molecule experimental techniques and theoretical approaches reveal that important aspects of virus biology can be understood in biomechanical terms at the nanoscale. A detailed knowledge of the relationship in virus capsids between small structural changes caused by single-point mutations and changes in mechanical properties may provide further physics-based insights into virus function; it may also facilitate the engineering of viral nanoparticles with improved mechanical behavior. Here, we used the minute virus of mice to undertake a systematic experimental study on the contribution to capsid stiffness of amino acid side chains at interprotein interfaces and the specific noncovalent interactions they establish. Selected side chains were individually truncated by introducing point mutations to alanine, and the effects on local and global capsid stiffness were determined using atomic force microscopy. The results revealed that, in the natural virus capsid, multiple, mostly hydrophobic, side chains buried along the interfaces between subunits preserve a comparatively low stiffness of most (S2 and S3) regions. Virtually no point mutation tested substantially reduced stiffness, whereas most mutations increased stiffness of the S2/S3 regions. This stiffening was invariably associated with reduced virus yields during cell infection. The experimental evidence suggests that a comparatively low stiffness at S3/S2 capsid regions may have been biologically selected because it facilitates capsid assembly, increasing infectious virus yields. This study demonstrated also that knowledge of individual amino acid side chains and biological pressures that determine the physical behavior of a protein nanoparticle may be used for engineering its mechanical properties.
Methods of Molecular Biology | 2012
Javier Oroz; Rubén Hervás; Alejandro Valbuena; Mariano Carrión-Vázquez
Intrinsically disordered proteins (IDPs) are predicted to represent about one third of the eukaryotic proteome. The dynamic ensemble of conformations of this steadily growing class of proteins has remained hardly accessible for bulk biophysical techniques. However, single-molecule techniques provide a useful means of studying these proteins. Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is one of such techniques, which has certain peculiarities that make it an important methodology to analyze the biophysical properties of IDPs. However, several drawbacks inherent to this technique can complicate such analysis. We have developed a protein engineering strategy to overcome these drawbacks such that an unambiguous mechanical analysis of proteins, including IDPs, can be readily performed. Using this approach, we have recently characterized the rich conformational polymorphism of several IDPs. Here, we describe a simple protocol to perform the nanomechanical analysis of IDPs using this new strategy, a procedure that in principle can also be followed for the nanomechanical analysis of any protein.
Biophysical Journal | 2017
Michiel van de Waterbeemd; Aida Llauró; Joost Snijder; Alejandro Valbuena; Alicia Rodríguez-Huete; Miguel A. Fuertes; Pedro J. de Pablo; Mauricio G. Mateu; Albert J. R. Heck
Icosahedral viral capsids are made of a large number of symmetrically organized protein subunits whose local movements can be essential for infection. In the capsid of the minute virus of mice, events required for infection that involve translocation of peptides through capsid pores are associated with a subtle conformational change. In vitro, this change can be reversibly induced by overcoming the energy barrier through mild heating of the capsid, but little is known about the capsid regions involved in the process. Here, we use hydrogen-deuterium exchange coupled to mass spectrometry to analyze the dynamics of the minute virus of mice capsid at increasing temperatures. Our results indicate that the transition associated with peptide translocation involves the structural rearrangement of regions distant from the capsid pores. These alterations are reflected in an increased dynamics of some secondary-structure elements in the capsid shell from which spikes protrude, and a decreased dynamics in the long intertwined loops that form the large capsid spikes. Thus, the translocation events through capsid pores involve a global conformational rearrangement of the capsid and a complex alteration of its equilibrium dynamics. This study additionally demonstrates the potential of hydrogen-deuterium exchange coupled to mass spectrometry to explore in detail temperature-dependent structural dynamics in large macromolecular protein assemblies. Most importantly, it paves the way for undertaking novel studies of the relationship between structure, dynamics, and biological function in virus particles and other large protein cages.
Scientific Reports | 2017
Pablo Guerra; Alejandro Valbuena; Jordi Querol-Audí; Cristina Silva; Milagros Castellanos; Alicia Rodríguez-Huete; Damià Garriga; Mauricio G. Mateu; Núria Verdaguer
Recent studies reveal that the mechanical properties of virus particles may have been shaped by evolution to facilitate virus survival. Manipulation of the mechanical behavior of virus capsids is leading to a better understanding of viral infection, and to the development of virus-based nanoparticles with improved mechanical properties for nanotechnological applications. In the minute virus of mice (MVM), deleterious mutations around capsid pores involved in infection-related translocation events invariably increased local mechanical stiffness and interfered with pore-associated dynamics. To provide atomic-resolution insights into biologically relevant changes in virus capsid mechanics, we have determined by X-ray crystallography the structural effects of deleterious, mechanically stiffening mutations around the capsid pores. Data show that the cavity-creating N170A mutation at the pore wall does not induce any dramatic structural change around the pores, but instead generates subtle rearrangements that propagate throughout the capsid, resulting in a more compact, less flexible structure. Analysis of the spacefilling L172W mutation revealed the same relationship between increased stiffness and compacted capsid structure. Implications for understanding connections between virus mechanics, structure, dynamics and infectivity, and for engineering modified virus-based nanoparticles, are discussed.
Biophysical Journal | 2012
Alejandro Valbuena; Andrés M. Vera; Javier Oroz; Margarita Menéndez; Mariano Carrión-Vázquez
Review of Scientific Instruments | 2007
Alejandro Valbuena; Javier Oroz; Andrés M. Vera; Alejandro Gimeno; Julio Gómez-Herrero; Mariano Carrión-Vázquez
Journal of the American Chemical Society | 2016
María Medrano; Miguel A. Fuertes; Alejandro Valbuena; Pablo J. P. Carrillo; Alicia Rodríguez-Huete; Mauricio G. Mateu