Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milagros Castellanos is active.

Publication


Featured researches published by Milagros Castellanos.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Manipulation of the mechanical properties of a virus by protein engineering

Carolina Carrasco; Milagros Castellanos; Pedro J. de Pablo; Mauricio G. Mateu

In a previous study, we showed that the DNA molecule within a spherical virus (the minute virus of mice) plays an architectural role by anisotropically increasing the mechanical stiffness of the virus. A finite element model predicted that this mechanical reinforcement is a consequence of the interaction between crystallographically visible, short DNA patches and the inner capsid wall. We have now tested this model by using protein engineering. Selected amino acid side chains have been truncated to specifically remove major interactions between the capsid and the visible DNA patches, and the effect of the mutations on the stiffness of virus particles has been measured using atomic force microscopy. The mutations do not affect the stiffness of the empty capsid; however, they significantly reduce the difference in stiffness between the DNA-filled virion and the empty capsid. The results (i) reveal that intermolecular interactions between individual chemical groups contribute to the mechanical properties of a supramolecular assembly and (ii) identify specific protein–DNA interactions as the origin of the anisotropic increase in the rigidity of a virus. This study also demonstrates that it is possible to control the mechanical properties of a protein nanoparticle by the rational application of protein engineering based on a mechanical model.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mechanical elasticity as a physical signature of conformational dynamics in a virus particle

Milagros Castellanos; Rebeca Pérez; Carolina Carrasco; Mercedes Hernando-Pérez; Julio Gómez-Herrero; Pedro J. de Pablo; Mauricio G. Mateu

In this study we test the hypothesis that mechanically elastic regions in a virus particle (or large biomolecular complex) must coincide with conformationally dynamic regions, because both properties are intrinsically correlated. Hypothesis-derived predictions were subjected to verification by using 19 variants of the minute virus of mice capsid. The structural modifications in these variants reduced, preserved, or restored the conformational dynamism of regions surrounding capsid pores that are involved in molecular translocation events required for virus infectivity. The mechanical elasticity of the modified capsids was analyzed by atomic force microscopy, and the results corroborated every prediction tested: Any mutation (or chemical cross-linking) that impaired a conformational rearrangement of the pore regions increased their mechanical stiffness. On the contrary, any mutation that preserved the dynamics of the pore regions also preserved their elasticity. Moreover, any pseudo-reversion that restored the dynamics of the pore regions (lost through previous mutation) also restored their elasticity. Finally, no correlation was observed between dynamics of the pore regions and mechanical elasticity of other capsid regions. This study (i) corroborates the hypothesis that local mechanical elasticity and conformational dynamics in a viral particle are intrinsically correlated; (ii) proposes that determination by atomic force microscopy of local mechanical elasticity, combined with mutational analysis, may be used to identify and study conformationally dynamic regions in virus particles and large biomolecular complexes; (iii) supports a connection between mechanical properties and biological function in a virus; (iv) shows that viral capsids can be greatly stiffened by protein engineering for nanotechnological applications.


Biophysical Journal | 2012

Mechanical Disassembly of Single Virus Particles Reveals Kinetic Intermediates Predicted by Theory

Milagros Castellanos; Rebeca Pérez; Pablo J. P. Carrillo; Pedro J. de Pablo; Mauricio G. Mateu

New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The capillarity of nanometric water menisci confined inside closed-geometry viral cages

Carolina Carrasco; M. Douas; Roberto Miranda; Milagros Castellanos; Pedro A. Serena; José L. Carrascosa; Mauricio G. Mateu; M. I. Marqués; P. J. de Pablo

We present an investigation of water menisci confined in closed geometries by studying the structural effects of their capillary forces on viruses during the final stage of desiccation. We used individual particles of the bacteriophage ϕ29 and the minute virus of mice. In both cases the genomic DNA was ejected from the capsid. However, although the structural integrity of the minute virus of mice was essentially preserved, the ϕ29 capsid underwent a wall-to-wall collapse. We provide evidence that the capillary forces of water confined inside the viruses are mainly responsible for these effects. Moreover, by performing theoretical simulations with a lattice gas model, we found that some structural differences between these 2 viruses may be crucial to explain the different ways in which they are affected by water menisci forces confined at the nanoscale.


Journal of Molecular Biology | 2011

Molecular Determinants of Self-Association and Rearrangement of a Trimeric Intermediate during the Assembly of a Parvovirus Capsid

Rebeca Pérez; Milagros Castellanos; Alicia Rodríguez-Huete; Mauricio G. Mateu

The minute virus of mice (MVM) provides a simple model for the dissection of the molecular determinants of the self-assembly, stability, and dynamics of a biological supramolecular complex. MVM assembly involves the trimerization of capsid subunits in the cytoplasm; trimers are transported to the nucleus, where they suffer a conformational change and are made competent for capsid formation. Our previous study revealed that capsid assembly from trimers is dependent on stronger intertrimer interactions that are equally spaced in an equatorial belt surrounding each trimer. We have now targeted the interfaces between monomers within each trimer to identify the molecular determinants of trimerization and the rearrangement needed for capsid assembly. Twenty-eight amino acid residues per monomer were individually mutated to alanine to remove most of the stronger intersubunit interactions. The effects on trimer and capsid assembly and virus infectivity in cells were analyzed. No side chain was individually required for trimer assembly in the cytoplasm; in contrast, half of them were required to make the trimers competent for nuclear capsid assembly, even though none was close to intertrimer interfaces. These critical side chains are conserved and participate in extensive hydrophobic contacts, buried hydrogen bonds, or salt bridges between subunits. This study on MVM capsid assembly reveals that: (i) trimerization is a robust process, insensitive to removal of individual intersubunit interactions; and (ii) the rearrangement of the trimer intermediate required for capsid assembly is a global process that depends on the establishment of many interactions along the protein-protein interfaces within each trimer.


Scientific Reports | 2015

PrP charge structure encodes interdomain interactions.

Javier Martínez; Rosa Sánchez; Milagros Castellanos; Natallia Makarava; Adriano Aguzzi; Ilia V. Baskakov; María Gasset

Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrPC) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We found that charges contain the information for interdomain interactions. Use of dynamic light scattering and thermal denaturation experiments delineates the compaction of the α-fold by an electrostatic compensation between the polybasic 23–30 region and the α3 electronegative surface. This interaction increases stability and disfavors fibrillation. Independently of this structural effect, the N-terminal electropositive clusters regulate the α-cleavage efficiency. In the fibrillar state, use of circular dichroism, atomic-force and fluorescence microscopies reveal that the N-terminal positive clusters and the α3 electronegative surface dictate the secondary structure, the assembly hierarchy and the growth length of the fibril state. These findings show that the PrP charge structure functions as a code set up to ensure function and reduce pathogenic routes.


Biochemical Journal | 2013

A slender tract of glycine residues is required for translocation of the VP2 protein N-terminal domain through the parvovirus MVM capsid channel to initiate infection.

Milagros Castellanos; Rebeca Pérez; Alicia Rodríguez-Huete; Esther Grueso; José M. Almendral; Mauricio G. Mateu

Viruses constitute paradigms to study conformational dynamics in biomacromolecular assemblies. Infection by the parvovirus MVM (minute virus of mice) requires a conformational rearrangement that involves the intracellular externalization through capsid channels of the 2Nt (N-terminal region of VP2). We have investigated the role in this process of conserved glycine residues in an extended glycine-rich tract located immediately after 2Nt. Based on the virus structure, residues with hydrophobic side chains of increasing volume were substituted for glycine residues 31 or 33. Mutations had no effect on capsid assembly or stability, but inhibited virus infectivity. All mutations, except those to alanine residues which had minor effects, impaired 2Nt externalization in nuclear maturing virions and in purified virions, to an extent that correlated with the side chain size. Different biochemical and biophysical analyses were consistent with this result. Importantly, all of the tested glycine residue replacements impaired the capacity of the virion to initiate infection, at ratios correlating with their restrictive effects on 2Nt externalization. Thus small residues within the evolutionarily conserved glycine-rich tract facilitate 2Nt externalization through the capsid channel, as required by this virus to initiate cell entry. The results demonstrate the exquisite dependence on geometric constraints of a biologically relevant translocation event in a biomolecular complex.


ACS Nano | 2017

Amino Acid Side Chains Buried along Intersubunit Interfaces in a Viral Capsid Preserve Low Mechanical Stiffness Associated with Virus Infectivity

Pablo J. P. Carrillo; María Medrano; Alejandro Valbuena; Alicia Rodríguez-Huete; Milagros Castellanos; Rebeca Pérez; Mauricio G. Mateu

Single-molecule experimental techniques and theoretical approaches reveal that important aspects of virus biology can be understood in biomechanical terms at the nanoscale. A detailed knowledge of the relationship in virus capsids between small structural changes caused by single-point mutations and changes in mechanical properties may provide further physics-based insights into virus function; it may also facilitate the engineering of viral nanoparticles with improved mechanical behavior. Here, we used the minute virus of mice to undertake a systematic experimental study on the contribution to capsid stiffness of amino acid side chains at interprotein interfaces and the specific noncovalent interactions they establish. Selected side chains were individually truncated by introducing point mutations to alanine, and the effects on local and global capsid stiffness were determined using atomic force microscopy. The results revealed that, in the natural virus capsid, multiple, mostly hydrophobic, side chains buried along the interfaces between subunits preserve a comparatively low stiffness of most (S2 and S3) regions. Virtually no point mutation tested substantially reduced stiffness, whereas most mutations increased stiffness of the S2/S3 regions. This stiffening was invariably associated with reduced virus yields during cell infection. The experimental evidence suggests that a comparatively low stiffness at S3/S2 capsid regions may have been biologically selected because it facilitates capsid assembly, increasing infectious virus yields. This study demonstrated also that knowledge of individual amino acid side chains and biological pressures that determine the physical behavior of a protein nanoparticle may be used for engineering its mechanical properties.


Swiss Medical Weekly | 2015

Fish β-parvalbumin acquires allergenic properties by amyloid assembly

Javier Martínez; Rosa Sánchez; Milagros Castellanos; Ana M Fernández-Escamilla; Sonia Vázquez-Cortés; Montserrat Fernandez-Rivas; María Gasset

PRINCIPLES Amyloids are highly cross-β-sheet-rich aggregated states that confer protease resistance, membrane activity and multivalence properties to proteins, all essential features for the undesired preservation of food proteins transiting the gastrointestinal tract and causing type I allergy. METHODS Amyloid propensity of β-parvalbumin, the major fish allergen, was theoretically analysed and assayed under gastrointestinal-relevant conditions using the binding of thioflavin T, the formation of sodium dodecyl sulphate- (SDS-) resistant aggregates, circular dichroism spectroscopy and atomic force microscopy fibril imaging. Impact of amyloid aggregates on allergenicity was assessed with dot blot. RESULTS Sequences of β-parvalbumin from species with commercial value contain several adhesive hexapeptides capable of driving amyloid formation. Using Atlantic cod β-parvalbumin (rGad m 1) displaying high IgE cross-reactivity, we found that formation of amyloid fibres under simulated gastrointestinal conditions accounts for the resistance to acid and neutral proteases, for the presence of membrane active species under gastrointestinal relevant conditions and for the IgE-recognition in the sera of allergic patients. Incorporation of the anti-amyloid compound epigallocatechin gallate prevents rGad m 1 fibrillation, facilitates its protease digestion and impairs its recognition by IgE. CONCLUSIONS the formation of amyloid by rGad m 1 explains its degradation resistance, its facilitated passage across the intestinal epithelial barrier and its epitope architecture as allergen.


Scientific Reports | 2017

Structural basis for biologically relevant mechanical stiffening of a virus capsid by cavity-creating or spacefilling mutations.

Pablo Guerra; Alejandro Valbuena; Jordi Querol-Audí; Cristina Silva; Milagros Castellanos; Alicia Rodríguez-Huete; Damià Garriga; Mauricio G. Mateu; Núria Verdaguer

Recent studies reveal that the mechanical properties of virus particles may have been shaped by evolution to facilitate virus survival. Manipulation of the mechanical behavior of virus capsids is leading to a better understanding of viral infection, and to the development of virus-based nanoparticles with improved mechanical properties for nanotechnological applications. In the minute virus of mice (MVM), deleterious mutations around capsid pores involved in infection-related translocation events invariably increased local mechanical stiffness and interfered with pore-associated dynamics. To provide atomic-resolution insights into biologically relevant changes in virus capsid mechanics, we have determined by X-ray crystallography the structural effects of deleterious, mechanically stiffening mutations around the capsid pores. Data show that the cavity-creating N170A mutation at the pore wall does not induce any dramatic structural change around the pores, but instead generates subtle rearrangements that propagate throughout the capsid, resulting in a more compact, less flexible structure. Analysis of the spacefilling L172W mutation revealed the same relationship between increased stiffness and compacted capsid structure. Implications for understanding connections between virus mechanics, structure, dynamics and infectivity, and for engineering modified virus-based nanoparticles, are discussed.

Collaboration


Dive into the Milagros Castellanos's collaboration.

Top Co-Authors

Avatar

Mauricio G. Mateu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carolina Carrasco

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Rebeca Pérez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alicia Rodríguez-Huete

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pedro J. de Pablo

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

José L. Carrascosa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Gasset

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pablo J. P. Carrillo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alejandro Valbuena

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Douas

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge