Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandra Bulajić is active.

Publication


Featured researches published by Aleksandra Bulajić.


Plant Disease | 2009

Incidence and Distribution of Iris yellow spot virus on Onion in Serbia

Aleksandra Bulajić; Ivana Djekic; Jelena Jović; S. Krnjajić; A. Vučurović; B. Krstić

In a survey to determine the presence and distribution of Iris yellow spot virus (IYSV) in greenhouse ornamentals and onion field crops in 14 districts of Serbia as well as on imported ornamental plants, 1,574 samples were collected and analyzed by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). IYSV was not detected in nearly 1,200 plant samples collected from 39 genera of ornamentals grown in greenhouses in Serbia or imported from other countries during 2005 to 2007. The virus was detected in samples from an onion seed crop in the Sirig locality (South Bačka District) that showed symptoms resembling those caused by IYSV and in samples without IYSV-like symptoms from an onion bulb crop in the Obrenovac locality (City of Belgrade District). Mechanical transmission of IYSV isolates was difficult, and only the isolate 605-SRB could infect four plant species, but not in all replications. No virus transmission could be demonstrated in 5,000 tested seeds originating from IYSV-infected onion crops. For further confirmation of IYSV, the nucleotide sequence of its nucleocapsid (NC) gene was obtained by reverse transcription-polymerase chain reaction (RT-PCR) in symptomatic onion samples as well as in symptomless leaves of Nicotiana benthamiana. Four previously developed primers were tested to determine their suitability for routine detection of Serbian IYSV isolates. Phylogenetic analysis showed clustering of isolates 605-SRB and 622-SRB from the onion seed crop and isolate 283-SRB from the onion bulb crop into two distant clades. The analysis indicated that Serbian isolates of IYSV do not share a recent common ancestor and that they represent two distinct lineages of IYSV in Serbia. Considering that onion is one of the most important and traditionally grown vegetable crops in Serbia, IYSV represents a potentially devastating pathogen in this country.


Journal of the Science of Food and Agriculture | 2012

In vitro and in vivo antifungal properties of cysteine proteinase inhibitor from green kiwifruit.

Milica Popovic; Aleksandra Bulajić; Danijela Ristić; B. Krstić; Ratko M. Jankov; Marija Gavrovic-Jankulovic

BACKGROUND Higher plants possess several mechanisms of defense against plant pathogens. Proteins actively synthesized in response to those stresses are called defense-related proteins which, among others, include certain protease inhibitors. It is of particular relevance to investigate plant natural defense mechanisms for pathogen control which include cystatins-specific inhibitors of cysteine proteases. RESULTS In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. Immuno-tissue print results indicated that CPI is most abundant in the outer layer of pericarp, near the peel, and the inner most part of the pulp-sites where it could act as a natural barrier against pathogens entering the fruit. The purified protein (15 µmol L(-1)) showed antifungal activity against two phytopathogenic fungi (Alternaria radicina and Botrytis cinerea) by inhibiting fungal spore germination. In vivo, CPI (10 µmol L(-1)) was able to prevent artificial infection of apple and carrot with spore suspension of B. cinerea and A. radicina, respectively. It also exerted activity on both intracellular and fermentation fluid proteinases. CONCLUSION Identification and characterization of plant defense molecules is the first step towards creation of improved methods for pathogen control based on naturally occurring molecules.


European Journal of Plant Pathology | 2012

Non-persistently aphid-borne viruses infecting pumpkin and squash in Serbia and partial characterization of Zucchini yellow mosaic virus isolates

A. Vučurović; Aleksandra Bulajić; I. Stanković; Danijela Ristić; Janoš Berenji; Jelena Jović; B. Krstić

Cucurbit species grown in the Vojvodina Province, Serbia, were surveyed for the incidence of Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Squash mosaic virus (SqMV), Papaya ringspot virus (PRSV) and Tobacco ringspot virus (TRSV) from 2007 to 2009. Samples from more than 700 pumpkin, squash and bottle gourd plants with virus-like symptoms were analyzed by double-antibody sandwich (DAS)-ELISA. ZYMV, WMV and CMV were detected in 79.2, 32.2, and 12.8% of tested samples, respectively. WMV was prevalent in 2007 and ZYMV in 2008–09. Mixed infections were the most frequent type in 2007–08 in contrast to 2009 when single infection of ZYMV prevailed. ZYMV was the most widespread being found in 33 out of 39 inspected fields. Virus species identification was confirmed in selected samples by conventional reverse transcription-polymerase chain reaction (RT-PCR) and sequencing of their coat protein genes. By comparing the obtained virus isolate sequences with those available in GenBank, the identification of serologically detected viruses was confirmed. Phylogenetic analysis based on complete coat protein (CP) sequences highlighted that Serbian ZYMV isolates were closely related to other Central European ZYMV isolates. Finally, additional testing of ELISA-negative samples by RT-PCR using primers specific to six other mosaic viruses revealed the presence of Tomato spotted wilt virus (TSWV) in winter (Cucurbita maxima) and summer (C. pepo ‘Beogradska’) squash. This is the first report of TSWV natural occurrence on cucurbits in Serbia and on winter squash worldwide.


Pesticidi I Fitomedicina | 2012

Genus Monilinia on pome and stone fruit species.

Jovana Hrustic; Milica Mihajlovic; Mila Grahovac; Goran Delibašić; Aleksandra Bulajić; B. Krstić; Brankica Tanovic

Different species of the genus Monilinia are common plant pathogens that endanger pome and stone fruit production worldwide. In Serbia, two species of this genus are widely distributed - M. laxa and M. fructigena, while M. fructicola, which is officially on the A2 EPPO List of quarantine pest organisms in Europe and on the 1A part I List of quarantine pest organisms in Serbia, has so far been detected only on stored apple and nectarine fruits. The most important control measures against these pathogens include chemical control in combination with adequate cultural practices, particularly under favourable conditions for disease development. Concerning that species of this genus can cause significant economic losses, knowledge of the pathogen biology, disease epidemiology and pathogen-host interactions is a necessary prerequisite for stable and profitable production of pome and stone fruits. [Projekat Ministarstva nauke Republike Srbije, br. III46008 and br. III43001]


Plant Disease | 2008

First report of Iris yellow spot virus on onion (Allium cepa) in Serbia.

Aleksandra Bulajić; Jelena Jović; S. Krnjajić; M. Petrov; Ivana Djekic; B. Krstić

Iris yellow spot virus (IYSV; genus Tospovirus, family Bunyaviridae) is established in several European countries (France, Italy, The Netherlands, Poland, Slovenia, Spain, and the UK) and its distribution in the EU region has increased since 2002 (3). In July 2007, symptoms resembling those of IYSV were observed in an onion (Allium cepa) seed crop in the Sirig locality in Serbia. Onion plants exhibited characteristic symptoms of chlorotic or necrotic spindle and diamond-shaped lesions on the leaves and scapes. Symptomatic plants were found throughout the field and disease incidence was estimated at 80%. Leaf and scape samples were tested for the presence of IYSV and two other tospoviruses, Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV), using commercial double-antibody sandwich (DAS)-ELISA diagnostic kits (Loewe Biochemica, Sauerlach, Germany). All samples tested negative for TSWV and INSV. IYSV was detected serologically in 26 of 34 onion samples. To determine an experimental host range, samples of IYSV-infected onion plants were homogenized in chilled 0.05 M phosphate buffer pH 7 containing 1 mM Na-EDTA, 5 mM Na-DIECA, and 5 mM Na-thioglycolate (2), and host plants were inoculated with the sap. Mechanical transmission of the virus occurred rarely. All inoculated test plants were assayed by DAS-ELISA and only four species tested positive for IYSV, but not in all replications. Inoculated Chenopodium quinoa developed local chlorotic lesions, Nicotiana tabacum cvs. Samsun and Prilep showed mild mosaic, while infected N. benthamiana were symptomless. For further confirmation of IYSV, conventional reverse transcription (RT)-PCR was performed on extracts made from symptomatic onion leaf material and from the ELISA-positive symptomless leaves of N. benthamiana. Total RNAs were extracted with an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was carried out with the OneStep RT PCR Kit (Qiagen) following the manufacturers instructions. The primer pair, IYSV56U/IYSV917L, covering the entire nucleocapsid (NC) gene was used for both amplification and sequencing (1). A product of the correct predicted size (896 bp) was obtained from each of the plants assayed, and that derived from isolate 605-SRB was purified (QUIAqick PCR Purification Kit, Qiagen) and sequenced (GenBank Accession No. EU586203). BLAST analyses revealed 86 to 97% sequence identity with the NC gene from all other IYSV. The highest identity (97%) was with leek and onion isolates (GenBank Accession Nos. EF427447 and EF19888) from Spain. To our knowledge, this is the first report of IYSV infection of onion seed crop in Serbia. Thorough inspections and subsequent testing would be needed to establish the distribution and incidence of IYSV in Serbia. References: (1) I. Robène-Soustrade et al. Plant Pathol. 55:288, 2006. (2) P. Roggero et al. Plant Dis. 86:950, 2002. (3) C. Sansford and J. Woodhall. Pest Risk Analysis for Iris Yellow Spot Virus. Online publication. Central Science Laboratory, Sand Hutton, UK, 2007.


Plant Disease | 2013

First report of brown rot caused by Monilinia fructicola on nectarine in Serbia.

Jovana Hrustic; M. Mihajlović; Brankica Tanovic; Goran Delibašić; I. Stanković; B. Krstić; Aleksandra Bulajić

In August 2011, nectarine (Prunus persica (L.) Batsch var. nucipersica (Suckow) C. K. Schneid) fruit originated from Oplenac region with symptoms of fruit rot was collected at a green market in Belgrade. Fruit had large, brown, sunken lesions covered with grayish brown tufts. Symptoms resembled those caused by species of Monilinia including M. laxa, M. fructigena, or M. fructicola (2). In order to isolate the causal organism, small superficial fragments of pericarp were superficially disinfected with commercial bleach and placed on potato dextrose agar (PDA). The majority (32 out of 33) isolates formed rosetted non-sporulating colonies with lobed margins resembling those of M. laxa. However, one isolate (Npgm) produced an abundant, grayish-white colony with even margins and concentric rings of sporogenous mycelium, resembling those described for M. fructicola (2). Conidia were one-celled, hyaline, ellipsoid to lemon shaped, 7.38 to 14.76 × 4.92 to 9.84 μm, and borne in branched monilioid chains. The average daily growth on PDA at 24°C was 10.9 mm. A single-spore isolate of Npgm was identified as M. fructicola based on the morphology of colony and conidia, temperature requirements, and growth rate (2). Morphological identification was confirmed by an amplified product of 535 bp using genomic DNA extracted from the mycelium of pure culture and species-specific PCR for the detection of M. fructicola (2). The ribosomal internal transcribed spacer (ITS) region of rDNA of Npgm was amplified and sequenced using primers ITS1/ITS4. Sequence analysis of ITS region revealed 100% nucleotide identity between the isolate Npgm (GenBank Accession No. JX127303) and 17 isolates of M. fructicola from different parts of the world, including four from Europe (FJ411109, FJ411110, GU967379, JN176564). Pathogenicity of the isolate Npgm was confirmed by inoculating five surface-disinfected mature nectarine and five apple fruits by placing a mycelial plug under the wounded skin of the fruit. Nectarine and apple fruits inoculated with sterile PDA plugs served as a negative controls. After a 3-day incubation at 22°C, inoculated sites developed brown lesions and the pathogen was succesfully reisolated. There were no symptoms on the control nectarine or apple fruits. M. fructicola is commonly present in Asia, North and South America, New Zealand, and Australia, while in the EPPO Region the pathogen is listed as an A2 quarantine organism (3). In Europe, the first discovery of M. fructicola was reported in France and since then, it has been found in Hungary, Switzerland, the Czech Republic, Spain, Slovenia, Italy, Austria, Poland, Romania, Germany, and Slovakia (1). Most recently, M. fructicola was found on stored apple fruits in Serbia (4). To our knowledge, this is the first report of M. fructicola decaying peach fruit in Serbia. These findings suggest that the pathogen is spreading on its principal host plants and causing substantial economic losses in the Serbian fruit production. References: (1) R. Baker et al. European Food Safety Authority. Online publication. www.efsa.europa.eu/efsajournal . EFSA J. 9:2119, 2011. (2) M. J. Côté. Plant Dis. 88:1219, 2004. (3) OEPP/EPPO. EPPO A2 list of pests recommended for regulation as quarantine pests. Version 2009-09. http://www.eppo.org/QUARANTINE/listA2.htm . (4). M. Vasic et al. Plant Dis. 96:456, 2012.


Plant Disease | 2010

Phytophthora ramorum occurrence in ornamentals in Serbia.

Aleksandra Bulajić; Ivana Djekic; Jelena Jović; S. Krnjajić; A. Vučurović; B. Krstić

In a survey to determine the presence of Phytophthora ramorum in Serbia, ornamentals from garden centers, nurseries, and private and public gardens, as well as imported plant material, were inspected. In total, 577 plant, soil, and potting media samples were tested using various detection methods: lateral flow diagnostic test, enzyme-linked immunosorbent assay, conventional polymerase chain reaction, and isolation, followed by identification based on growth characteristics in culture and morphological features. P. ramorum was not detected in any of the 162 soil or potting media tested by the baiting method. P. ramorum was detected in 12 Rhododendron samples from one private garden in Zemun (City of Belgrade District) exhibiting symptoms of leaf necrosis and blight and petiole necrosis, and in three samples of Pieris spp. from one garden center exhibiting symptoms of leaf necrosis. Eight Phytophthora isolates were obtained from the positive Rhododendron plants and three isolates from Pieris plants, and all were identified as P. ramorum on the basis of their uniform morphological and growth characteristics. P. ramorum conformation was also made by sequencing of the internal transcribed spacer regions for a single isolate taken from one infected rhododendron and one pieris plant. Serbian isolates were determined as A1 mating type, due to formation of a few typical sexual structures when crossed with the A2 mating type of P. cinnamomi and P. cryptogea. Pathogenicity test on nonwounded detached leaves of 19 popular ornamentals, as well as the most frequently imported ones, revealed that 10 host species were susceptible, including Robinia pseudoacacia, which is widely distributed in Serbia. During this study, Cotoneaster horizontalis and C. dammeri were determined to be new experimental hosts of P. ramorum. This article provides evidence of P. ramorum introduction into Serbia. Although P. ramorum has not been detected in Serbian production nurseries, its presence outdoors might cause severe damages on susceptible common urban plants in public green and natural ecosystems.


Plant Disease | 2015

Monilinia spp. Causing Brown Rot of Stone Fruit in Serbia

Jovana Hrustic; Goran Delibašić; I. Stanković; Mila Grahovac; B. Krstić; Aleksandra Bulajić; Brankica Tanovic

Brown rot is one of the most important pre- and postharvest fungal diseases of stone fruit worldwide. In Serbia, where production of stone fruit is economically important, Monilinia laxa and M. fructigena are widely distributed. In surveys from 2011 to 2013, 288 isolates of Monilinia spp. were collected from 131 localities in 16 districts and from six hosts in Serbia. Using multiplex polymerase chain reaction, phylogenetic analysis, and morphological characterization, three species of Monilinia were identified as the causal agents of brown rot of stone fruit: M. laxa (89% of isolates), M. fructigena (3%), and M. fructicola (8%). In 2011, M. fructicola was reported for the first time on stone fruit in Serbia, with only one isolate detected. More isolates of M. fructicola were detected in 2012 (2 isolates) and 2013 (20 isolates). The presence of M. fructicola, as well as its increased frequency of detection during the survey, may indicate a change in the population structure of these pathogens, which could have an important impact on brown rot disease management in Serbia.


Plant Disease | 2011

First Report of Tomato spotted wilt virus on Gerbera hybrida in Serbia

I. Stanković; Aleksandra Bulajić; A. Vučurović; Danijela Ristić; Jelena Jović; B. Krstić

In May 2009, approximately 30% of plants within a greenhouse-grown Gerbera hybrida crop in Vranjska Banja (Pčinj District) in Serbia displayed chlorotic oak-leaf patterns followed by necrosis and distortion of leaves. Symptoms on naturally infected gerbera plants and local necrotic spots on Petunia × hybrida mechanically inoculated with infected gerbera sap using chilled 0.05 M phosphate buffer (pH 7) containing 1 mM Na-EDTA, 5 mM Na-DIECA, and 5 mM Na-thioglycolate (4) suggested the presence of a Tospovirus. Symptomatic leaves were tested for the presence of Tomato spotted wilt virus (TSWV), Impatiens necrotic spot virus (INSV), and Chrysanthemum stem necrosis virus (CSNV) by commercial double-antibody sandwich (DAS)-ELISA diagnostic kits (Loewe Biochemica, Sauerlach, Germany). Commercial positive and negative controls and extract from healthy gerbera tissue were included in each ELISA. All 20 tested plants were negative for INSV and CSNV. TSWV was detected serologically in 18 of 20 gerbera samples. The presence of TSWV in ELISA-positive symptomatic gerbera plants was further confirmed by conventional reverse transcription (RT)-PCR. Total RNAs were extracted with an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was conducted with the OneStep RT-PCR Kit (Qiagen) using Serbian tobacco TSWV isolate (GQ279731) and RNA extract from healthy gerbera as positive and negative controls, respectively. Two different sets of TSWV-specific primers, L1 TSWVR/L2 TSWVF (2) and M962/M66 (3), for a 276-bp fragment of the RNA-dependent RNA polymerase (RdRp) gene and a 897-bp fragment of the NSm gene, respectively, were used for both amplification and sequencing. RT-PCR analyses of each tested plant detected the presence of amplification fragments of expected size. The amplified products corresponding to part of the RdRp and NSm genes derived from the isolate 158-Gerb were purified (QIAquick PCR Purification Kit, Qiagen) and sequenced in both directions (GenBank Accession Nos. HQ246452 and HQ246453, respectively). Sequence analysis of the partial RdRp gene, conducted using MEGA4 software, revealed 91.1 to 98% nt identity (95.1 to 98.8% amino acid [aa] identities) with corresponding sequences of TSWV L RNA deposited in GenBank. The highest identity was found with an isolate from globe artichoke (AM940436) in Greece, and isolates from tomato (GQ279732), impatiens (GQ132190), and tobacco isolates (GQ279731, FJ189392, and FJ189393) found within Serbia. Analysis of the NSm sequence of isolate 158-Gerb demonstrated nucleotide identities varying between 90.6 and 99.6% (80.9 and 99.6% aa identities) with those of previously reported TSWV isolates. The highest identity was with tobacco isolate GQ373174 from Serbia. Therefore, while gerbera is one of the principal ornamental hosts of TSWV in the EPPO region (1), to our knowledge, this is the first report infecting gerbera in Serbia, which may have a devastating influence on its production. References: (1) Anonymous. OEPP/EPPO Bull. 29:465, 1999. (2) R. A. Mumford et al. J. Virol. Methods 46:303, 1994. (3) W. P. Qiu et al. Virology 244:186, 1998. (4) P. Roggero et al. Plant Dis. 86:950, 2002.


Pesticidi I Fitomedicina | 2014

The spreading of Alfalfa mosaic virus in lavandin in Croatia

I. Stanković; Karolina Vrandečić; Jasenka Ćosić; Katarina Milojević; Aleksandra Bulajić; B. Krstić

SUMMARY A survey was conducted in 2012 and 2013 to detect the presence and distribution of Alfalfa mosaic virus (AMV) in lavandin crops growing in continental parts of Croatia. A total of 73 lavandin samples from six crops in different localities were collected and analyzed for the presence of AMV and Cucumber mosaic virus (CMV) using commercial double-antibody sandwich (DAS)-ELISA kits. AMV was detected serologically in 62 samples collected at three different localities, and none of the samples tested positive for CMV. For further analyses, six selected samples of naturally infected lavandin plants originating from different localities were mechanically transmitted to test plants: Chenopodium quinoa, C. amaranticolor, Nicotiana benthamiana and Ocimum basilicum, confirming the infectious nature of the disease. Molecular detection was performed by amplification of a 751 bp fragment in all tested samples, using the specific primers CP AMV1/CP AMV2 that amplify the part of the coat protein (CP) gene and 3’-UTR. The RT-PCR products derived from the isolates 371-13 and 373-13 were sequenced (KJ504107 and KJ504108, respectively) and compared with the AMV sequences available in GenBank. CP sequence analysis, conducted using the MEGA5 software, revealed that the isolate 371-13 had the highest nucleotide identity of 99.5% (100% amino acid identity) with an isolate from Argentina originating from Medicago sativa (KC881010), while the sequence of isolate 373-13 had the highest identity with an Italian AMV isolate from Lavandula stoechas (FN667967) of 98.6% (99% amino acid identity). Phylogenetic analysis revealed the clustering of selected isolates into four molecular groups and the lavandin AMV isolates from Croatia grouped into two distinct groups, implying a significant variability within the AMV lavandin population.

Collaboration


Dive into the Aleksandra Bulajić's collaboration.

Top Co-Authors

Avatar

B. Krstić

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasenka Ćosić

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar

Karolina Vrandečić

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge