Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alemu Regassa is active.

Publication


Featured researches published by Alemu Regassa.


International Journal of Molecular Sciences | 2016

Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules

Dorothy Moseti; Alemu Regassa; Woo Kyun Kim

Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules.


Poultry Science | 2015

The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides

Yue Shang; Alemu Regassa; Ji Hyuk Kim; Woo Kyun Kim

This study was conducted to examine the effects of fructooligosaccharide (FOS) supplementation on growth performance, lymphoid organ weight, intestinal morphology, and immunological status in broilers (n=180) challenged with Salmonella Enteritidis lipopolysaccharides (LPS). Birds were randomly assigned into a 3×2 factorial arrangement that included 1) 3 dietary treatments from d one to 21: positive control (PC), wheat-corn-soybean meal based diet contained antibiotics (virginiamycin and monensin); negative control (NC), as PC without antibiotics; and NC+FOS, as NC supplemented with 0.5% FOS, and 2) 2 intraperitoneal injections: 2 mg/kg Salmonella Enteritidis LPS or sterile phosphate buffered saline (PBS) on d 21. Growth performance and relative lymphoid organ weight were not significantly different among the treatments. Villus height, crypt depth, and total mucosa thickness were significantly increased (P<0.05) in the ileum of broiler chickens fed NC+FOS when compared to PC and NC. Birds in NC+FOS treatment had reduced heterophil but increased monocyte count when compared to NC (P<0.05). Significant diet×challenge interaction was observed on natural IgY levels (P<0.0001), and a significant dietary effect was observed on specific IgY levels in chickens fed NC+FOS (P=0.003). Supplementation of FOS also increased the expression of interleukin (IL)-1ß, -10, and interferon (IFN)-γ mRNA in the ileum of the birds. In summary, Salmonella Enteritidis LPS challenge established significant differences in the immune responses in broiler chickens. FOS supplementation increased ileal mucosa thickness and elevated the expressions of certain cytokine genes. It also led to the alteration of leukocyte compositions and serum IgY levels in response to LPS challenge, suggesting FOS supplementation may be effective to induce protective outcomes in gut health and immunity of broiler chickens.


Cell Biology International | 2013

Effects of oleic acid and chicken serum on the expression of adipogenic transcription factors and adipogenic differentiation in hen preadipocytes.

Alemu Regassa; Woo Kyun Kim

We have examined the effect of oleic acid (OA) concentrations and incubation time, along with chicken serum (CS), on adipogenic differentiation and expression of adipogenic transcripts in hen preadipocytes. Preadipocytes were treated with (i) an adipogenic cocktail (DMI) containing 500 nM dexamethasone, 0.5 mM 3‐isobutyl‐1‐methylxanthine and 20 µg/mL insulin alone and DMI + 75, 150, 300 or 600 µM OA for 48 h; (ii) DMI + 300 µM OA (DMIOA) for 6, 12, 24 or 48 h; and (iii) foetal bovine serum (FBS), CS, DMI + FBS, DMI + CS, DMIOA + FBS and DMIOA + CS. While FABP4 was significantly expressed with increasing concentrations of OA, the expression of C/EBPβ, LEPR and FAS were unchanged compared with the control. PPARγ2 expression was unchanged across all time‐points. A significantly higher level of C/EBPα was measured at 48 h, but the levels of C/EBPβ increased after 12 h. Levels of FABP4 significantly increased with the time of incubation after 12 h, but that of LPL was reduced (P < 0.05) at 6, 24 and 48 h. FABP4 was highly expressed in cells treated with CS, DMI + CS and DMIOA + CS compared to cells treated with FBS, DMI + FBS and DMIOA + FBS. In conclusion, increased concentrations of OA and incubation time increases lipid accumulation; FABP4 and C/EBPβ are potential transcription factors regulating OA induced adipogenesis of fat cells obtained from laying hen. CS is a potent inducer of adipogenic differentiation in hen preadipocytes.


Poultry Science | 2017

Nutritional and metabolic implications of replacing cornstarch with D-xylose in broiler chickens fed corn and soybean meal-based diet.

Alemu Regassa; E. Kiarie; J. S. Sands; M. C. Walsh; Woo Kyun Kim; C. M. Nyachoti

&NA; Effects of substituting cornstarch with D‐xylose on growth performance, nutrients digestibility, serum metabolites, and expression of select hepatic genes involved in glucose and lipid metabolism were investigated in broiler chickens. A total of 360 one‐day‐old male Ross chicks were fed 3 diets (n = 24; 5 chicks/cage) for 21 days. A control corn‐soybean meal‐based diet with 25% cornstarch was formulated to meet specifications. Two additional diets were formulated by substituting cornstarch with 5 or 15% D‐xylose w/w. Growth performance and digestibility by index method were determined in 12 replicate cages. Birds in these replicates had free access to feed and water, the BW and feed intake (FI) were monitored weekly and the excreta samples were collected on d 18 to 20. The other 12 replicates were used for blood and liver sampling by serial slaughter. On d 18, baseline (t0) birds were sampled following a 12 h overnight fasting and birds allowed 30 min access to the feed; samples were subsequently taken at 60, 120, 180, 240, and 300 min post feeding. Serum metabolites (glucose, xylose, and insulin) were assayed at all time points, whereas expression of hepatic transcripts was evaluated at zero, 180 and 300 min. Xylose linearly reduced (P < 0.05) FI, BWG, gross energy digestibility, and feed conversion ratio (FCR) but increased (P < 0.05) serum xylose level. Serum glucose and insulin levels were higher (P < 0.05) in the post‐fed state compared with baseline, irrespective of treatments. There was an interaction (P < 0.05) between diet and sampling time on the expression of hepatic genes. At t0, xylose linearly increased (P < 0.05) the expression of pyruvate carboxylase, Acetyl Co‐A acethyltransferase 2 (ACAT2), and glucose transporter 2. Xylose linearly reduced (P < 0.05) the expression of ACAT2 at 300 min post feeding. In conclusion, 5% or more xylose reduced growth performance and utilization of nutrients linked to hepatic enzymes and transcription factors involved in glucose and lipid metabolism.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2015

Effects of 25-(OH)D3 on fecal Ca and P excretion, bone mineralization, Ca and P transporter mRNA expression and performance in growing female pigs

Alemu Regassa; Roshan Adhikari; C. M. Nyachoti; Woo Kyun Kim

A study was conducted to examine the effects of 25-hydroxyvitamin D3 (25-(OH)D3) on fecal Ca and P excretion, bone mineralization, performance and the mRNA expression of intestinal transporter genes in growing female pigs. Sixty-day old gilts (n = 24) with an average initial BW of 23.13 ± 1.49 kg were randomly allocated to a control diet (diet 1) containing wheat/corn/soybean meal and 150 IU kg−1 of Vitamin D3, diet 1 + 50 μg of 25-(OH)D3 kg−1 (diet 2) and diet 1 + 100 μg of 25-(OH)D3 kg−1 (diet 3). The pigs were housed in an individual pen and had ad libitum access to feed and water for 42 days, and BWG and feed intake were measured weekly. Measures of bone mineralization and expression of Ca and P transporters mRNA were analyzed using Dual Energy X-Ray Absortiometry (DEXA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Data were analyzed using GLM procedure of the Statistical Analysis System (SAS Institute version 9.2). Fecal Ca and P concentration were significantly reduced (P ≤ 0.05) in pigs fed diets 2 and 3 compared with the control diet. Supplementation of 25-(OH)D3 did not significantly improve bone mineralization, animal performance and intestinal transporters mRNA expression except for SLC34A1, a sodium-dependent phosphate transporter 1. In conclusion, supplementation of 25-(OH)D3 in swine nutrition may not improve animal performance but has the potential to reduce environmental pollution by increasing dietary Ca and P retention while reducing their excretion.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2017

Effect of low levels of dietary available phosphorus on phosphorus utilization, bone mineralization, phosphorus transporter mRNA expression and performance in growing pigs

Bishwo B. Pokharel; Alemu Regassa; C. M. Nyachoti; Woo Kyun Kim

ABSTRACT A study was conducted to examine the effects of different dietary levels of available phosphorus (aP) on P excretion, bone mineralization, performance and the mRNA expression of sodium-dependent P transporters in growing pigs. Sixty-day old growing pigs (n = 54) with an average initial BW of 19.50 ± 1.11 kg were randomly allocated to a control diet (C) containing 0.23% available phosphorus (aP), T1 containing 0.17% aP and T2 containing 0.11% aP. There were 6 pens per treatment with 3 pigs per pen. Body weight and feed intake were measured weekly. At the end of each week, one pig from each pen was housed in a metabolic crate for 24 h to collect fecal and urine samples and then sacrificed to obtain third metacarpal (MC3) bones and jejunal and kidney samples. Bones were scanned by Dual Energy X-ray Absorptiometry (DEXA). Fecal and urine samples were sub-sampled and analyzed for P content. The expression of P transporter mRNA in jejunum and kidney samples was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Data were analyzed using GLM procedure of the Statistical Analysis System (SAS Institute version 9.2). Pigs fed the T2 diet had reduced (P < 0.05) average daily gain (ADG) and gain to feed (G:F) compared to those fed the C diet during week 2. Overall, ADG and G:F were also reduced (P < 0.05) in pigs fed the T2 diet compared to those fed the C and T1 diets. Bone mineral density (BMD) and bone mineral content (BMC) were reduced (P < 0.05) in pigs fed the T2 diet compared to those fed the C diet throughout the experiment. At week 1, jejunal mRNA expression of Na (+)-dependent phosphate transporter 2 (SLC34A2) was increased (P < 0.01) in pigs fed the T2 diet compared to C diet. Renal mRNA expression of Na(+)-dependent phosphate transporter 1 (SLC34A1) and SLC34A3 were increased (P < 0.05) in pigs fed the T2 diet compared to those fed the C diet at week 2 and was accompanied by lower (P < 0.05) urinary P in pigs fed the T2 diet during week 2 and week 3. In conclusion, growing pigs are highly sensitive to low dietary P as shown by reduced ADG, bone mineralization and urinary P level, but moderate reduction in dietary P up to 0.17% aP in the diet has the potential to reduce environmental pollution by reducing P concentration in swine manure and without compromising performance.


Animal Nutrition | 2018

Application of resistant starch in swine and poultry diets with particular reference to gut health and function

Alemu Regassa; C. M. Nyachoti

The immediate post-weaning period poses a major challenge on the survival of piglets. Similarly, newly hatched chicks face life threatening challenges due to enteric infections. In the past several years, in-feed antibiotics have been used to reduce these production problems and improve growth. However, in-feed antibiotics have been banned in many jurisdictions and therefore the most effective alternatives to in-feed antibiotics must be developed. To date, several studies have been conducted to develop alternatives to antibiotics. One of the potential candidates as alternatives to in-feed antibiotics is resistant starch (RS). Resistance starch is a type of starch that resists enzymatic digestion in the upper parts of the gastrointestinal tract and therefore passes to hindgut where it can be fermented by resident microorganisms. Microbial fermentation of RS in the hindgut results in the production of short chain fatty acids (SCFA). Production of SCFA in turn results in growth and proliferation of colonic and cecal cells, increased expression of genes involved in gut development, and creation of an acidic environment. The acidic environment suppresses the growth of pathogenic microorganisms while selectively promoting the growth of beneficial microbes. Thus, RS has the potential to improve gut health and function by modifying and stabilising gut microbial community and by improving the immunological status of the host. In this review, we discussed the roles of RS in modifying and stabilising gut microbiota, gut health and function, carcass quality, and energy metabolism and growth performance in pigs and poultry.


Animal Nutrition | 2017

Optimal sulfur amino acid to lysine ratio for post weaning piglets reared under clean or unclean sanitary conditions

Roselyn Kahindi; Alemu Regassa; J. K. Htoo; Martin Nyachoti

Two 14-day experiments, each with 90 (Duroc × [Yorkshire × Landrace]; 7.3 ± 0.6 kg) piglets, were conducted to determine the optimum sulfur amino acid (SAA) to lysine (Lys) ratio (SAA:Lys) for piglets when reared under clean or unclean sanitary conditions using performance and non-performance response criteria. Piglets were randomly assigned to the following dietary treatments. The basal diet contained 1.18% standardized ileal digestible (SID) Lys, and the SAA:Lys was 52%. In diets 2 to 5, the basal diet was supplemented with 4 graded levels of dl-Met to make SAA:Lys of 56%, 60%, 64% and 68%. In Exp. 1, piglets were housed in disinfected clean room. In Exp. 2, piglets were housed in a room previously occupied by other pigs and was not disinfected. On the last day, blood was collected to measure plasma urea nitrogen (PUN) and one pig per pen was euthanized to collect jejunal tissue to measure villus height (VH), crypt depth (CD), and VH:CD. In Exp. 1, increasing SAA:Lys linearly and quadratically increased VH and VH:CD (P < 0.05). In Exp. 2, increasing SAA:Lys linearly increased (P < 0.05) VH and VH:CD and linearly and quadratically decreased PUN (P < 0.05). Estimated PUN and VH-based optimum SAA:Lys requirements for clean and unclean sanitary condition were 60%, 63% and 66%, respectively.


Cell Biology International | 2016

Phenamil enhances the adipogenic differentiation of hen preadipocytes.

Alemu Regassa; Kye Won Park; Woo Kyun Kim

A study was conducted to examine the effect of phenamil on adipogenic differentiation and expression of key adipogenic transcripts in hen preadipocytes. Preadipocytes were isolated from 20‐week old Single Comb White Leghorn hens (Gallas gallus, Lohman strain). The experiment lasted for 48 h and had six treatments. Non‐treated control (C) cells, cells treated with dexamethasone, 3‐isobutyl‐1‐methylxanthine, insulin, and oleic acid (DMIOA) (T1), DMIOA + 15 μM phenamil (T2), DMIOA + 30 μM phenamil (T3), 15 μM phenamil alone (T4), and 30 μM phenamil alone (T5). Neutral lipid accumulation and the mRNA expression of key adipogenic transcripts were measured in all treatments and compared. Lipid accumulation was detected in T1, T2, and T3 only. Expression of peroxisome proliferator receptor‐activator gamma 2 (PPARγ2), the core enhancer binding protein α (C/EBPα), C/EBPβ, fatty acid binding protein 4 (FABP4), and lipoprotein lipase (LPL) as well as ETS variant 4 (ETV4) and 5 was higher (P < 0.05) in T2, T3, T4, and T5 compared to C. Expression of these transcripts was higher (P < 0.05) in T2 and T3 compared to T4 and T5. The core enhancer binding protein α, C/EBPβ, and FABP4 were highly expressed (P < 0.05) in T1 compared to C. However, the expression of PPARγ2, LPL, and ETV4 and ETV5 was not significantly different. Expression of C/EBPα, C/EBPβ, and FABP4 was higher (P < 0.05) in T2 and T3 compared to T1. Expression of sterol regulatory element binding protein 1 (SREBP1) and leptin receptor (LEPR) was not significantly different among the treatments. In conclusion, phenamil enhances DMIOA‐induced adipogenic differentiation of hen preadipocytes but does not induce adipogenesis by itself.


BMC Genomics | 2015

Transcriptome analysis of hen preadipocytes treated with an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol

Alemu Regassa; Woo Kyun Kim

Collaboration


Dive into the Alemu Regassa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miyoung Suh

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge