Alena Moiseenko
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alena Moiseenko.
Development | 2014
Elie El Agha; Susanne Herold; Denise Al Alam; Jennifer Quantius; BreAnne MacKenzie; Gianni Carraro; Alena Moiseenko; Cho-Ming Chao; Parviz Minoo; Werner Seeger; Saverio Bellusci
The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10iCre knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1- E-Cad- Epcam+ Pro-Spc+ lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45- Cd31- Sca-1+). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases.
Cell Stem Cell | 2017
Elie El Agha; Alena Moiseenko; Vahid Kheirollahi; Stijn De Langhe; Slaven Crnkovic; Grazyna Kwapiszewska; Marten Szibor; Djuro Kosanovic; Felix Schwind; Ralph T. Schermuly; Ingrid Henneke; BreAnne MacKenzie; Jennifer Quantius; Susanne Herold; Aglaia Ntokou; Katrin Ahlbrecht; Thomas Braun; Rory E. Morty; Andreas Günther; Werner Seeger; Saverio Bellusci
Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.
Development | 2015
Denise Al Alam; Elie El Agha; Reiko Sakurai; Vahid Kheirollahi; Alena Moiseenko; Soula Danopoulos; Amit Shrestha; Carole Schmoldt; Jennifer Quantius; Susanne Herold; Cho-Ming Chao; Caterina Tiozzo; Stijn De Langhe; Maksim V. Plikus; Matthew E. Thornton; Brendan H. Grubbs; Parviz Minoo; Virender K. Rehan; Saverio Bellusci
Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. Summary: During lung development in mice, Fgf10 signaling plays an essential role in the formation of lipofibroblasts, which are required for the growth and survival of adult lung epithelial stem cells.
Molecular and Cellular Pediatrics | 2016
Cho-Ming Chao; Alena Moiseenko; Klaus-Peter Zimmer; Saverio Bellusci
BackgroundAlveologenesis is the last stage in lung development and is essential for building the gas-exchanging units called alveoli. Despite intensive lung research, the intricate crosstalk between mesenchymal and epithelial cell lineages during alveologenesis is poorly understood. This crosstalk contributes to the formation of the secondary septae, which are key structures of healthy alveoli.ConclusionsA better understanding of the cellular and molecular processes underlying the formation of the secondary septae is critical for the development of new therapies to protect or regenerate the alveoli. This review summarizes briefly the alveologenesis process in mouse and human. Further, it discusses the current knowledge on the epithelial and mesenchymal progenitor cells during early lung development giving rise to the key cellular players (e.g., alveolar epithelial cell type I, alveolar epithelial cell type II, alveolar myofibroblast, lipofibroblast) involved in alveologenesis. This review focusses mainly on the role of fibroblast growth factor 10 (FGF10), one of the most important signaling molecules during lung development, in epithelial and mesenchymal cell lineage formation.
The Journal of Pathology | 2017
Cho-Ming Chao; Faady Yahya; Alena Moiseenko; Caterina Tiozzo; Amit Shrestha; Negah Ahmadvand; Elie El Agha; Jennifer Quantius; Salma Dilai; Vahid Kheirollahi; Matthew R. Jones; Jochen Wilhem; Gianni Carraro; Harald Ehrhardt; Klaus-Peter Zimmer; Guillermo Barreto; Katrin Ahlbrecht; Rory E. Morty; Susanne Herold; Rosanna G. Abellar; Werner Seeger; Ralph T. Schermuly; Jin-San Zhang; Parviz Minoo; Saverio Bellusci
Inflammation‐induced FGF10 protein deficiency is associated with bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurely born infants characterized by arrested alveolar development. So far, experimental evidence for a direct role of FGF10 in lung disease is lacking. Using the hyperoxia‐induced neonatal lung injury as a mouse model of BPD, the impact of Fgf10 deficiency in Fgf10+/− versus Fgf10+/+ pups was investigated. In normoxia, no lethality of Fgf10+/+ or Fgf10+/− pups was observed. By contrast, all Fgf10+/− pups died within 8 days of hyperoxic injury, with lethality starting at day 5, whereas Fgf10+/+ pups were all alive. Lungs of pups from the two genotypes were collected on postnatal day 3 following normoxia or hyperoxia exposure for further analysis. In hyperoxia, Fgf10+/− lungs exhibited increased hypoalveolarization. Analysis by FACS of the Fgf10+/− versus control lungs in normoxia revealed a decreased ratio of alveolar epithelial type II (AECII) cells over total Epcam‐positive cells. In addition, gene array analysis indicated reduced AECII and increased AECI transcriptome signatures in isolated AECII cells from Fgf10+/− lungs. Such an imbalance in differentiation is also seen in hyperoxia and is associated with reduced mature surfactant protein B and C expression. Attenuation of the activity of Fgfr2b ligands postnatally in the context of hyperoxia also led to increased lethality with decreased surfactant expression. In summary, decreased Fgf10 mRNA levels lead to congenital lung defects, which are compatible with postnatal survival, but which compromise the ability of the lungs to cope with sub‐lethal hyperoxic injury. Fgf10 deficiency affects quantitatively and qualitatively the formation of AECII cells. In addition, Fgfr2b ligands are also important for repair after hyperoxia exposure in neonates. Deficient AECII cells could be an additional complication for patients with BPD. Copyright
Stem Cells | 2017
Alena Moiseenko; Vahid Kheirollahi; Cho-Ming Chao; Negah Ahmadvand; Jennifer Quantius; Jochen Wilhelm; Susanne Herold; Katrin Ahlbrecht; Rory E. Morty; Albert A. Rizvanov; Parviz Minoo; Elie El Agha; Saverio Bellusci
ACTA2 expression identifies pulmonary airway and vascular smooth muscle cells (SMCs) as well as alveolar myofibroblasts (MYF). Mesenchymal progenitors expressing fibroblast growth factor 10 (Fgf10), Wilms tumor 1 (Wt1), or glioma‐associated oncogene 1 (Gli1) contribute to SMC formation from early stages of lung development. However, their respective contribution and specificity to the SMC and/or alveolar MYF lineages remain controversial. In addition, the contribution of mesenchymal cells undergoing active WNT signaling remains unknown. Using Fgf10CreERT2, Wt1CreERT2, Gli1CreERT2, and Axin2CreERT2 inducible driver lines in combination with a tdTomatoflox reporter line, the respective differentiation of each pool of labeled progenitor cells along the SMC and alveolar MYF lineages was quantified. The results revealed that while FGF10+ and WT1+ cells show a minor contribution to the SMC lineage, GLI1+ and AXIN2+ cells significantly contribute to both the SMC and alveolar MYF lineages, but with limited specificity. Lineage tracing using the Acta2‐CreERT2 transgenic line showed that ACTA2+ cells labeled at embryonic day (E)11.5 do not expand significantly to give rise to new SMCs at E18.5. However, ACTA2+ cells labeled at E15.5 give rise to the majority (85%–97%) of the SMCs in the lung at E18.5 as well as alveolar MYF progenitors in the lung parenchyma. Fluorescence‐activated cell sorting‐based isolation of different subpopulations of ACTA2+ lineage‐traced cells followed by gene arrays, identified transcriptomic signatures for alveolar MYF progenitors versus airway and vascular SMCs at E18.5. Our results establish a new transcriptional landscape for further experiments addressing the function of signaling pathways in the formation of different subpopulations of ACTA2+ cells. Stem Cells 2017;35:1566–1578
The Journal of Pathology | 2018
Tatiana V Kalymbetova; Balachandar Selvakumar; José Alberto Rodríguez-Castillo; Miša Gunjak; Christina Malainou; Miriam Ruth Heindl; Alena Moiseenko; Cho-Ming Chao; István Vadász; Konstantin Mayer; Jürgen Lohmeyer; Saverio Bellusci; Eva Böttcher-Friebertshäuser; Werner Seeger; Susanne Herold; Rory E. Morty
Trophic functions for macrophages are emerging as key mediators of developmental processes, including bone, vessel, and mammary gland development. Yolk sac‐derived macrophages mature in the distal lung shortly after birth. Myeloid‐lineage macrophages are recruited to the lung and are activated under pathological conditions. These pathological conditions include bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by stunted lung development, where the formation of alveoli is blocked. No study has addressed causal roles for immune cells in lung alveolarization. We employed antibody‐based and transgenic death receptor‐based depletion approaches to deplete or prevent lung recruitment of immune cell populations in a hyperoxia‐based mouse model of BPD. Neither neutrophils nor exudate macrophages (which might include lung interstitial macrophages) contributed to structural perturbations to the lung that were provoked by hyperoxia; however, cells of the Csf1r‐expressing monocyte/macrophage lineage were implicated as causal mediators of stunted lung development. We propose that resident alveolar macrophages differentiate into a population of CD45+ CD11c+ SiglecF+ CD11b+ CD68+ MHCII+ cells, which are activated by hyperoxia, and contribute to disturbances to the structural development of the immature lung. This is the first report that causally implicates immune cells in pathological disturbances to postnatal lung organogenesis. Copyright
Developmental Dynamics | 2017
Elie El Agha; Vahid Kheirollahi; Alena Moiseenko; Werner Seeger; Saverio Bellusci
Background: Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10‐positive (FGF10+) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10+ progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air‐liquid interface (ALI) culture system. Results: FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time‐lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10+ lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. Conclusions: Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell‐fate decisions in the developing mouse lung. Developmental Dynamics 246:531–538, 2017.
bioRxiv | 2018
Vahid Kheirollahi; Roxana Wasnick; Valentina Biasin; Ana Ivonne Vazquez-Armendariz; Xuran Chu; Alena Moiseenko; Astrid Weiss; Jochen Wilhelm; Jin-San Zhang; Grazyna Kwapiszewska; Susanne Herold; Ralph T. Schermuly; Werner Seeger; Andreas Guenther; Saverio Bellusci; Elie El Agha
Idiopathic pulmonary fibrosis is a fatal, incurable lung disease in which the intricate alveolar network of the human lung is progressively replaced by fibrotic scars, eventually leading to respiratory failure. Myofibroblasts are the effector cells that lead to abnormal deposition of extracellular matrix proteins and therefore mediate fibrotic disease not only in the lung but also in other organs. Emerging literature suggests a correlation between fibrosis and metabolic alterations in IPF. In this study, we show that the first-line antidiabetic drug, metformin, exerts potent antifibrotic effects in the lung by modulating metabolic pathways, inhibiting TGFβ1 action, suppressing collagen formation, activating PPARγ signaling and inducing lipogenic differentiation in lung myofibroblasts derived from human patients. Using genetic lineage tracing in a murine model of lung fibrosis, we show that metformin alters the fate of myofibroblasts and accelerates fibrosis resolution by inducing myofibroblast-tolipofibroblast transdifferentiation. Detailed pathway analysis showed that the reduction of collagen synthesis was largely AMPK-dependent, whereas the transdifferentiation of myo- to lipofibroblasts occurred in a BMP2-PPARγ-dependent fashion and was largely AMPK-independent. Our data report an unprecedented role for metformin in lung fibrosis, thus warranting further therapeutic evaluation.
Herbsttagung der Sektionen Zellbiologie und Infektiologie und Tuberkulose der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e.V. | 2018
Alena Moiseenko; E El Agha; Vahid Kheirollahi; Cho-Ming Chao; S De Langhe; Saverio Bellusci