Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where BreAnne MacKenzie is active.

Publication


Featured researches published by BreAnne MacKenzie.


Development | 2014

Fgf10 -positive cells represent a progenitor cell population during lung development and postnatally

Elie El Agha; Susanne Herold; Denise Al Alam; Jennifer Quantius; BreAnne MacKenzie; Gianni Carraro; Alena Moiseenko; Cho-Ming Chao; Parviz Minoo; Werner Seeger; Saverio Bellusci

The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10iCre knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1- E-Cad- Epcam+ Pro-Spc+ lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45- Cd31- Sca-1+). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases.


Development | 2010

Signaling by FGFR2b controls the regenerative capacity of adult mouse incisors

Sara Parsa; Koh Ichi Kuremoto; Kerstin Seidel; Reza Tabatabai; BreAnne MacKenzie; Takayoshi Yamaza; Kentaro Akiyama; Jonathan Branch; Chester J. Koh; Denise Al Alam; Ophir D. Klein; Saverio Bellusci

Rodent incisors regenerate throughout the lifetime of the animal owing to the presence of epithelial and mesenchymal stem cells in the proximal region of the tooth. Enamel, the hardest component of the tooth, is continuously deposited by stem cell-derived ameloblasts exclusively on the labial, or outer, surface of the tooth. The epithelial stem cells that are the ameloblast progenitors reside in structures called cervical loops at the base of the incisors. Previous studies have suggested that FGF10, acting mainly through fibroblast growth factor receptor 2b (FGFR2b), is crucial for development of the epithelial stem cell population in mouse incisors. To explore the role of FGFR2b signaling during development and adult life, we used an rtTA transactivator/tetracycline promoter approach that allows inducible and reversible attenuation of FGFR2b signaling. Downregulation of FGFR2b signaling during embryonic stages led to abnormal development of the labial cervical loop and of the inner enamel epithelial layer. In addition, postnatal attenuation of signaling resulted in impaired incisor growth, characterized by failure of enamel formation and degradation of the incisors. At a cellular level, these changes were accompanied by decreased proliferation of the transit-amplifying cells that are progenitors of the ameloblasts. Upon release of the signaling blockade, the incisors resumed growth and reformed an enamel layer, demonstrating that survival of the stem cells was not compromised by transient postnatal attenuation of FGFR2b signaling. Taken together, our results demonstrate that FGFR2b signaling regulates both the establishment of the incisor stem cell niches in the embryo and the regenerative capacity of incisors in the adult.


Cell Stem Cell | 2017

Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis

Elie El Agha; Alena Moiseenko; Vahid Kheirollahi; Stijn De Langhe; Slaven Crnkovic; Grazyna Kwapiszewska; Marten Szibor; Djuro Kosanovic; Felix Schwind; Ralph T. Schermuly; Ingrid Henneke; BreAnne MacKenzie; Jennifer Quantius; Susanne Herold; Aglaia Ntokou; Katrin Ahlbrecht; Thomas Braun; Rory E. Morty; Andreas Günther; Werner Seeger; Saverio Bellusci

Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.


Development | 2014

miR-142-3p balances proliferation and differentiation of mesenchymal cells during lung development

Gianni Carraro; Amit Shrestha; Jana Rostkovius; Adriana Contreras; Cho Ming Chao; Elie El Agha; BreAnne MacKenzie; Salma Dilai; Diego Guidolin; Makoto M. Taketo; Andreas Günther; Maya Kumar; Werner Seeger; Stijn De Langhe; Guillermo Barreto; Saverio Bellusci

The regulation of the balance between proliferation and differentiation in the mesenchymal compartment of the lung is largely uncharacterized, unlike its epithelial counterpart. In this study, we determined that miR-142-3p contributes to the proper proliferation of mesenchymal progenitors by controlling the level of WNT signaling. miR-142-3p can physically bind to adenomatous polyposis coli mRNA, functioning to regulate its expression level. In miR-142-3p loss-of-function experiments, proliferation of parabronchial smooth muscle cell progenitors is significantly impaired, leading to premature differentiation. Activation of WNT signaling in the mesenchyme, or Apc loss of function, can both rescue miR-142-3p knockdown. These findings show that in the embryonic lung mesenchyme, the microRNA machinery modulates the level of WNT signaling, adding an extra layer of control in the feedback loop between FGFR2C and β-catenin-mediated WNT signaling.


Respiratory Research | 2015

Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis

BreAnne MacKenzie; Martina Korfei; Ingrid Henneke; Zaneta Sibinska; Xia Tian; Stefanie Hezel; Salma Dilai; Roxana Wasnick; Beate Schneider; Jochen Wilhelm; Elie El Agha; Walter Klepetko; Werner Seeger; Ralph T. Schermuly; Andreas Günther; Saverio Bellusci

BackgroundRecent clinical studies show that tyrosine kinase inhibitors slow the rate of lung function decline and decrease the number of acute exacerbations in patients with Idiopathic Pulmonary Fibrosis (IPF). However, in the murine bleomycin model of fibrosis, not all tyrosine kinase signaling is detrimental. Exogenous ligands Fibroblast Growth Factor (FGF) 7 and 10 improve murine lung repair and increase survival after injury via tyrosine kinase FGF receptor 2b-signaling. Therefore, the level and location of FGF/FGFR expression as well as the exogenous effect of the most highly expressed FGFR2b ligand, FGF1, was analyzed on human lung fibroblasts.MethodsFGF ligand and receptor expression was evaluated in donor and IPF whole lung homogenates using western blotting and qPCR. Immunohistochemistry for FGF1 and FGFR1/2/3/4 were performed on human lung tissue. Lastly, the effects of FGF1, a potent, multi-FGFR ligand, were studied on primary cultures of IPF and non-IPF donor fibroblasts. Western blots for pro-fibrotic markers, proliferation, FACS for apoptosis, transwell assays and MetaMorph analyses on cell cultures were performed.ResultsWhole lung homogenate analyses revealed decreased FGFR b-isoform expression, and an increase in FGFR c-isoform expression. Of the FGFR2b-ligands, FGF1 was the most significantly increased in IPF patients; downstream targets of FGF-signaling, p-ERK1/2 and p-AKT were also increased. Immunohistochemistry revealed FGF1 co-localization within basal cell sheets, myofibroblast foci, and Surfactant protein-C positive alveolar epithelial type-II cells as well as co-localization with FGFR1, FGFR2, FGFR3, FGFR4 and myofibroblasts expressing the migratory marker Fascin. Both alone and in the presence of heparin, FGF1 led to increased MAPK-signaling in primary lung fibroblasts. While smooth muscle actin was unchanged, heparin + FGF1 decreased collagen production in IPF fibroblasts. In addition, FGF1 + heparin increased apoptosis and cell migration. The FGFR inhibitor (PD173074) attenuated these effects.ConclusionsStrong expression of FGF1/FGFRs in pathogenic regions of IPF suggest that aberrant FGF1-FGFR signaling is increased in IPF patients and may contribute to the pathogenesis of lung fibrosis by supporting fibroblast migration and increased MAPK-signaling.


PLOS ONE | 2012

Characterization of a Novel Fibroblast Growth Factor 10 (Fgf10) Knock-In Mouse Line to Target Mesenchymal Progenitors during Embryonic Development

Elie El Agha; Denise Al Alam; Gianni Carraro; BreAnne MacKenzie; Kerstin Goth; Stijn De Langhe; Robert Voswinckel; Mohammad K. Hajihosseini; Virender K. Rehan; Saverio Bellusci

Fibroblast growth factor 10 (Fgf10) is a key regulator of diverse organogenetic programs during mouse development, particularly branching morphogenesis. Fgf10-null mice suffer from lung and limb agenesis as well as cecal and colonic atresia and are thus not viable. To date, the Mlcv1v-nLacZ-24 transgenic mouse strain (referred to as Fgf10LacZ), which carries a LacZ insertion 114 kb upstream of exon 1 of Fgf10 gene, has been the only strain to allow transient lineage tracing of Fgf10-positive cells. Here, we describe a novel Fgf10Cre-ERT2 knock-in line (Fgf10iCre) in which a Cre-ERT2-IRES-YFP cassette has been introduced in frame with the ATG of exon 1 of Fgf10 gene. Our studies show that Cre-ERT2 insertion disrupts Fgf10 function. However, administration of tamoxifen to Fgf10iCre; Tomatoflox double transgenic embryos or adult mice results in specific labeling of Fgf10-positive cells, which can be lineage-traced temporally and spatially. Moreover, we show that the Fgf10iCre line can be used for conditional gene inactivation in an inducible fashion during early developmental stages. We also provide evidence that transcription factors located in the first intron of Fgf10 gene are critical for maintaining Fgf10 expression over time. Thus, the Fgf10iCre line should serve as a powerful tool to explore the functions of Fgf10 in a controlled and stage-specific manner.


Thorax | 2015

Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis

Martina Korfei; Skwarna S; Ingrid Henneke; BreAnne MacKenzie; Klymenko O; Saito S; Clemens Ruppert; von der Beck D; Poornima Mahavadi; Walter Klepetko; Saverio Bellusci; Crestani B; Pullamsetti Ss; Ludger Fink; Werner Seeger; Krämer Oh; Andreas Guenther

Background Activation and differentiation of fibroblasts into contractile protein-expressing myofibroblasts and their acquired apoptosis-resistant phenotype are critical factors towards the development of idiopathic pulmonary fibrosis (IPF), a fatal disease characterised by distorted pulmonary structure and excessive extracellular matrix (ECM) deposition. The molecular mechanisms underlying these processes in IPF remain incompletely understood. We investigated the possible implication of aberrant overexpression and activity of histone deacetylases (HDACs) in IPF. Methods We analysed lung tissues from patients with sporadic IPF (n=26) and non-diseased control lungs (n=16) for expression of class I and II HDACs. Primary IPF fibroblasts were treated with HDAC inhibitors (HDACi) LBH589 or valproic acid (VPA). Results Compared to control lungs, protein levels of class I (HDAC1, HDAC2, HDAC3, HDAC8) and class II HDACs (HDAC4, HDAC 5, HDAC 7, HDAC 9) were significantly elevated in IPF lungs. Using immunohistochemistry, strong induction of nearly all HDAC enzymes was observed in myofibroblasts of fibroblast foci and in abnormal bronchiolar basal cells at sites of aberrant re-epithelialisation in IPF lungs, but not in controls. Treatment of primary IPF fibroblasts with the pan-HDACi LBH589 resulted in significantly reduced expression of genes associated with ECM synthesis, proliferation and cell survival, as well as in suppression of HDAC7, and was paralleled by induction of endoplasmic reticulum stress and apoptosis. The profibrotic and apoptosis-resistant phenotype of IPF fibroblasts was also partly attenuated by the class I HDACi VPA. Conclusions Aberrant overexpression of HDACs in basal cells of IPF lungs may contribute to the bronchiolisation process in this disease. Similarly, generation and apoptosis resistance of IPF fibroblasts are mediated by enhanced activity of HDAC enzymes. Therefore, pan-HDAC inhibition by LBH589 may present a novel therapeutic option for patients with IPF.


British Journal of Sports Medicine | 2017

Longevity protein klotho is induced by a single bout of exercise

Alana Santos-Dias; BreAnne MacKenzie; Manoel Carneiro Oliveira-Junior; Rosa Maria Affonso Moysés; Fernanda Marciano Consolim-Colombo; Rodolfo de Paula Vieira

Physical activity clearly reduces disease-specific mortality in patients with diabetes.1The mechanism responsible for reduced mortality appears to be linked to exercise-induced improvement in oxidation and reduction (redox) responses, as well as the halting or reversal of arterial and venal calcifications 2 ,3 in diabetes-associated cardiovascular diseases (CVD)—currently the worlds leading cause of mortality. 4 A recent review established a relationship between decreased bioavailability of the protein klotho with CVD and with chronic kidney disease (CKD) disease states. 5 Reduced levels of klotho are related to CVD and CKD complications, involving vascular calcification, inflammation, endothelial dysfunction and redox imbalance. 5 Klotho is primarily expressed in the kidneys, but also found in other organs as well as cerebrospinal fluid, urine and blood. 6Reduced plasma levels of klotho are found in elderly persons, and klotho deficient mice display an ageing …


PLOS ONE | 2016

Aerobic Exercise Attenuated Bleomycin-Induced Lung Fibrosis in Th2-Dominant Mice

Adilson Santos Andrade-Sousa; Paulo Rogério Pereira; BreAnne MacKenzie; Manoel Carneiro Oliveira-Junior; Erasmo Assumpção-Neto; Maysa Alves Rodrigues Brandão-Rangel; Nilsa Regina Damaceno-Rodrigues; Elia Garcia Caldini; Ana Paula Pereira Velosa; Walcy Rosolia Teodoro; Ana Paula Ligeiro de Oliveira; Marisa Dolhnikoff; Oliver Eickelberg; Rodolfo de Paula Vieira

Introduction The aim of this study was to investigate the effect of aerobic exercise (AE) in reducing bleomycin-induced fibrosis in mice of a Th2-dominant immune background (BALB/c). Methods BALB/c mice were distributed into: sedentary, control (CON), Exercise-only (EX), sedentary, bleomycin-treated (BLEO) and bleomycin-treated+exercised (BLEO+EX); (n = 8/group). Following treadmill adaptation, 15 days following a single, oro-tracheal administration of bleomycin (1.5U/kg), AE was performed 5 days/week, 60min/day for 4 weeks at moderate intensity (60% of maximum velocity reached during a physical test) and assessed for pulmonary inflammation and remodeling, and cytokine levels in bronchoalveolar lavage (BAL). Results At 45 days post injury, compared to BLEO, BLEO+EX demonstrated reduced collagen deposition in the airways (p<0.001) and also in the lung parenchyma (p<0.001). In BAL, a decreased number of total leukocytes (p<0.01), eosinophils (p<0.001), lymphocytes (p<0.01), macrophages (p<0.01), and neutrophils (p<0.01), as well as reduced pro-inflammatory cytokines (CXCL-1; p<0.01), (IL-1β; p<0.001), (IL-5; p<0.01), (IL-6; p<0.001), (IL-13; p<0.01) and pro-fibrotic growth factor IGF-1 (p<0.001) were observed. Anti-inflammatory cytokine IL-10 was increased (p<0.001). Conclusion AE attenuated bleomycin-induced collagen deposition, inflammation and cytokines accumulation in the lungs of mice with a predominately Th2-background suggesting that therapeutic AE (15–44 days post injury) attenuates the pro-inflammatory, Th2 immune response and fibrosis in the bleomycin model.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair

BreAnne MacKenzie; Ingrid Henneke; Stefanie Hezel; Denise Al Alam; Elie El Agha; Cho-Ming Chao; Jennifer Quantius; Jochen Wilhelm; Matthew R. Jones; Kerstin Goth; Xiaokun Li; Werner Seeger; Melanie Königshoff; Susanne Herold; Albert A. Rizvanov; Andreas Günther; Saverio Bellusci

Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26(rtTA/+);tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0-11; days 0-28) or during later stages (days 6-28 and 14-28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.

Collaboration


Dive into the BreAnne MacKenzie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianni Carraro

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kerstin Goth

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge