Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alena Stančáková is active.

Publication


Featured researches published by Alena Stančáková.


Molecular Cell | 2011

SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome

Matthew D. Hirschey; Tadahiro Shimazu; Enxuan Jing; Carrie A. Grueter; Amy M. Collins; Bradley E. Aouizerat; Alena Stančáková; Eric S. Goetzman; Maggie Lam; Bjoern Schwer; Robert D. Stevens; Michael J. Muehlbauer; Sanjay Kakar; Nathan M. Bass; Johanna Kuusisto; Markku Laakso; Frederick W. Alt; Christopher B. Newgard; Robert V. Farese; C. Ronald Kahn; Eric Verdin

Acetylation is increasingly recognized as an important metabolic regulatory posttranslational protein modification, yet the metabolic consequence of mitochondrial protein hyperacetylation is unknown. We find that high-fat diet (HFD) feeding induces hepatic mitochondrial protein hyperacetylation in mice and downregulation of the major mitochondrial protein deacetylase SIRT3. Mice lacking SIRT3 (SIRT3KO) placed on a HFD show accelerated obesity, insulin resistance, hyperlipidemia, and steatohepatitis compared to wild-type (WT) mice. The lipogenic enzyme stearoyl-CoA desaturase 1 is highly induced in SIRT3KO mice, and its deletion rescues both WT and SIRT3KO mice from HFD-induced hepatic steatosis and insulin resistance. We further identify a single nucleotide polymorphism in the human SIRT3 gene that is suggestive of a genetic association with the metabolic syndrome. This polymorphism encodes a point mutation in the SIRT3 protein, which reduces its overall enzymatic efficiency. Our findings show that loss of SIRT3 and dysregulation of mitochondrial protein acetylation contribute to the metabolic syndrome.


Diabetes | 2009

Changes in Insulin Sensitivity and Insulin Release in Relation to Glycemia and Glucose Tolerance in 6,414 Finnish Men

Alena Stančáková; Martin Javorský; Teemu Kuulasmaa; Steven M. Haffner; Johanna Kuusisto; Markku Laakso

OBJECTIVE We evaluated insulin sensitivity and insulin secretion across the entire range of fasting (FPG) and 2-h plasma glucose (PG), and we investigated the differences in insulin sensitivity and insulin release in different glucose tolerance categories. RESEARCH DESIGN AND METHODS A total of 6,414 Finnish men (aged 57 ± 7 years, BMI 27.0 ± 3.9 kg/m2) from our ongoing population-based METSIM (Metabolic Syndrome in Men) study were included. Of these subjects, 2,168 had normal glucose tolerance, 2,859 isolated impaired fasting glucose (IFG), 217 isolated impaired glucose tolerance (IGT), 701 a combination of IFG and IGT, and 469 newly diagnosed type 2 diabetes. RESULTS The Matsuda index of insulin sensitivity decreased substantially within the normal range of FPG (−17%) and 2-h PG (−37%) and was approximately −65 and −53% in the diabetic range of FPG and 2-h PG, respectively, compared with the reference range (FPG and 2-h PG <5.0 mmol/l). Early-phase insulin release declined by only approximately −5% within the normal range of FPG and 2-h PG but decreased significantly in the diabetic range of FPG (by 32–70%) and 2-h PG (by 33–51%). Changes in insulin sensitivity and insulin secretion in relation to hyperglycemia were independent of obesity. The predominant feature of isolated IGT was impaired peripheral insulin sensitivity. Isolated IFG was characterized by impaired early and total insulin release. CONCLUSIONS Peripheral insulin sensitivity was already decreased substantially at low PG levels within the normoglycemic range, whereas impairment in insulin secretion was observed mainly in the diabetic range of FPG and 2-h PG. Obesity did not affect changes in insulin sensitivity or insulin secretion in relation to hyperglycemia.


Nature Genetics | 2013

Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion

Jeroen R. Huyghe; Anne U. Jackson; Marie P. Fogarty; Martin L. Buchkovich; Alena Stančáková; Heather M. Stringham; Xueling Sim; Lingyao Yang; Christian Fuchsberger; Henna Cederberg; Peter S. Chines; Tanya M. Teslovich; Jane Romm; Hua Ling; Ivy McMullen; Roxann G. Ingersoll; Elizabeth W. Pugh; Kimberly F. Doheny; Benjamin M. Neale; Mark J. Daly; Johanna Kuusisto; Laura J. Scott; Hyun Min Kang; Francis S. Collins; Gonçalo R. Abecasis; Richard M. Watanabe; Michael Boehnke; Markku Laakso; Karen L. Mohlke

Insulin secretion has a crucial role in glucose homeostasis, and failure to secrete sufficient insulin is a hallmark of type 2 diabetes. Genome-wide association studies (GWAS) have identified loci contributing to insulin processing and secretion; however, a substantial fraction of the genetic contribution remains undefined. To examine low-frequency (minor allele frequency (MAF) 0.5–5%) and rare (MAF < 0.5%) nonsynonymous variants, we analyzed exome array data in 8,229 nondiabetic Finnish males using the Illumina HumanExome Beadchip. We identified low-frequency coding variants associated with fasting proinsulin concentrations at the SGSM2 and MADD GWAS loci and three new genes with low-frequency variants associated with fasting proinsulin or insulinogenic index: TBC1D30, KANK1 and PAM. We also show that the interpretation of single-variant and gene-based tests needs to consider the effects of noncoding SNPs both nearby and megabases away. This study demonstrates that exome array genotyping is a valuable approach to identify low-frequency variants that contribute to complex traits.


Diabetes | 2014

Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity

Antigone S. Dimas; Vasiliki Lagou; Adam Barker; Joshua W. Knowles; Reedik Mägi; Marie-France Hivert; Andrea Benazzo; Denis Rybin; Anne U. Jackson; Heather M. Stringham; Ci Song; Antje Fischer-Rosinsky; Trine Welløv Boesgaard; Niels Grarup; Fahim Abbasi; Themistocles L. Assimes; Ke Hao; Xia Yang; Cécile Lecoeur; Inês Barroso; Lori L. Bonnycastle; Yvonne Böttcher; Suzannah Bumpstead; Peter S. Chines; Michael R. Erdos; Jürgen Graessler; Peter Kovacs; Mario A. Morken; Felicity Payne; Alena Stančáková

Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.


Diabetes | 2009

Association of 18 Confirmed Susceptibility Loci for Type 2 Diabetes With Indices of Insulin Release, Proinsulin Conversion, and Insulin Sensitivity in 5,327 Nondiabetic Finnish Men

Alena Stančáková; Teemu Kuulasmaa; Jussi Paananen; Anne U. Jackson; Lori L. Bonnycastle; Francis S. Collins; Michael Boehnke; Johanna Kuusisto; Markku Laakso

OBJECTIVE We investigated the effects of 18 confirmed type 2 diabetes risk single nucleotide polymorphisms (SNPs) on insulin sensitivity, insulin secretion, and conversion of proinsulin to insulin. RESEARCH DESIGN AND METHODS A total of 5,327 nondiabetic men (age 58 ± 7 years, BMI 27.0 ± 3.8 kg/m2) from a large population-based cohort were included. Oral glucose tolerance tests and genotyping of SNPs in or near PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, LOC387761, CDKN2B, IGF2BP2, CDKAL1, HNF1B, WFS1, JAZF1, CDC123, TSPAN8, THADA, ADAMTS9, NOTCH2, KCNQ1, and MTNR1B were performed. HNF1B rs757210 was excluded because of failure to achieve Hardy-Weinberg equilibrium. RESULTS Six SNPs (TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1, and MTNR1B) were significantly (P < 6.9 × 10−4) and two SNPs (KCNJ11 and IGF2BP2) were nominally (P < 0.05) associated with early-phase insulin release (InsAUC0–30/GluAUC0–30), adjusted for age, BMI, and insulin sensitivity (Matsuda ISI). Combined effects of these eight SNPs reached −32% reduction in InsAUC0–30/GluAUC0–30 in carriers of ≥11 vs. ≤3 weighted risk alleles. Four SNPs (SLC30A8, HHEX, CDKAL1, and TCF7L2) were significantly or nominally associated with indexes of proinsulin conversion. Three SNPs (KCNJ11, HHEX, and TSPAN8) were nominally associated with Matsuda ISI (adjusted for age and BMI). The effect of HHEX on Matsuda ISI became significant after additional adjustment for InsAUC0–30/GluAUC0–30. Nine SNPs did not show any associations with examined traits. CONCLUSIONS Eight type 2 diabetes–related loci were significantly or nominally associated with impaired early-phase insulin release. Effects of SLC30A8, HHEX, CDKAL1, and TCF7L2 on insulin release could be partially explained by impaired proinsulin conversion. HHEX might influence both insulin release and insulin sensitivity.


Circulation-cardiovascular Genetics | 2012

Genome-Wide Screen for Metabolic Syndrome Susceptibility Loci Reveals Strong Lipid Gene Contribution But No Evidence for Common Genetic Basis for Clustering of Metabolic Syndrome Traits

Kati Kristiansson; Markus Perola; Emmi Tikkanen; Johannes Kettunen; Ida Surakka; Aki S. Havulinna; Alena Stančáková; C. Barnes; Elisabeth Widen; Eero Kajantie; Johan G. Eriksson; Jorma Viikari; Mika Kähönen; Terho Lehtimäki; Olli T. Raitakari; Anna-Liisa Hartikainen; Aimo Ruokonen; Anneli Pouta; Antti Jula; Antti J. Kangas; Pasi Soininen; Mika Ala-Korpela; Satu Männistö; Pekka Jousilahti; Lori L. Bonnycastle; Marjo-Riitta Järvelin; Johanna Kuusisto; Francis S. Collins; Markku Laakso; Aarno Palotie

Background— Genome-wide association (GWA) studies have identified several susceptibility loci for metabolic syndrome (MetS) component traits, but have had variable success in identifying susceptibility loci to the syndrome as an entity. We conducted a GWA study on MetS and its component traits in 4 Finnish cohorts consisting of 2637 MetS cases and 7927 controls, both free of diabetes, and followed the top loci in an independent sample with transcriptome and nuclear magnetic resonance-based metabonomics data. Furthermore, we tested for loci associated with multiple MetS component traits using factor analysis, and built a genetic risk score for MetS. Methods and Results— A previously known lipid locus, APOA1/C3/A4/A5 gene cluster region (SNP rs964184), was associated with MetS in all 4 study samples (P=7.23×10−9 in meta-analysis). The association was further supported by serum metabolite analysis, where rs964184 was associated with various very low density lipoprotein, triglyceride, and high-density lipoprotein metabolites (P=0.024–1.88×10−5). Twenty-two previously identified susceptibility loci for individual MetS component traits were replicated in our GWA and factor analysis. Most of these were associated with lipid phenotypes, and none with 2 or more uncorrelated MetS components. A genetic risk score, calculated as the number of risk alleles in loci associated with individual MetS traits, was strongly associated with MetS status. Conclusions— Our findings suggest that genes from lipid metabolism pathways have the key role in the genetic background of MetS. We found little evidence for pleiotropy linking dyslipidemia and obesity to the other MetS component traits, such as hypertension and glucose intolerance.


Diabetes | 2012

Hyperglycemia and a Common Variant of GCKR Are Associated With the Levels of Eight Amino Acids in 9,369 Finnish Men

Alena Stančáková; Mete Civelek; Niyas K. Saleem; Pasi Soininen; Antti J. Kangas; Henna Cederberg; Jussi Paananen; Jussi Pihlajamäki; Lori L. Bonnycastle; Mario A. Morken; Michael Boehnke; Päivi Pajukanta; Aldons J. Lusis; Francis S. Collins; Johanna Kuusisto; Mika Ala-Korpela; Markku Laakso

We investigated the association of glycemia and 43 genetic risk variants for hyperglycemia/type 2 diabetes with amino acid levels in the population-based Metabolic Syndrome in Men (METSIM) Study, including 9,369 nondiabetic or newly diagnosed type 2 diabetic Finnish men. Plasma levels of eight amino acids were measured with proton nuclear magnetic resonance spectroscopy. Increasing fasting and 2-h plasma glucose levels were associated with increasing levels of several amino acids and decreasing levels of histidine and glutamine. Alanine, leucine, isoleucine, tyrosine, and glutamine predicted incident type 2 diabetes in a 4.7-year follow-up of the METSIM Study, and their effects were largely mediated by insulin resistance (except for glutamine). We also found significant correlations between insulin sensitivity (Matsuda insulin sensitivity index) and mRNA expression of genes regulating amino acid degradation in 200 subcutaneous adipose tissue samples. Only 1 of 43 risk single nucleotide polymorphisms for type 2 diabetes or hyperglycemia, the glucose-increasing major C allele of rs780094 of GCKR, was significantly associated with decreased levels of alanine and isoleucine and elevated levels of glutamine. In conclusion, the levels of branched-chain, aromatic amino acids and alanine increased and the levels of glutamine and histidine decreased with increasing glycemia, reflecting, at least in part, insulin resistance. Only one single nucleotide polymorphism regulating hyperglycemia was significantly associated with amino acid levels.


PLOS Genetics | 2013

Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry

Shafqat Ahmad; Gull Rukh; Tibor V. Varga; Ashfaq Ali; Azra Kurbasic; Dmitry Shungin; Ulrika Ericson; Robert W. Koivula; Audrey Y. Chu; Lynda M. Rose; Andrea Ganna; Qibin Qi; Alena Stančáková; Camilla H. Sandholt; Cathy E. Elks; Gary C. Curhan; Majken K. Jensen; Rulla M. Tamimi; Kristine H. Allin; Torben Jørgensen; Soren Brage; Claudia Langenberg; Mette Aadahl; Niels Grarup; Allan Linneberg; Guillaume Paré; Patrik K. E. Magnusson; Nancy L. Pedersen; Michael Boehnke; Anders Hamsten

Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age2, sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.


PLOS Genetics | 2013

Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained.

Ying Wu; Lindsay L. Waite; Anne U. Jackson; Wayne H-H Sheu; Steven Buyske; Devin Absher; Donna K. Arnett; Eric Boerwinkle; Lori L. Bonnycastle; Cara L. Carty; Iona Cheng; Barbara Cochran; Damien C. Croteau-Chonka; Logan Dumitrescu; Charles B. Eaton; Nora Franceschini; Xiuqing Guo; Brian E. Henderson; Lucia A. Hindorff; Eric Kim; Leena Kinnunen; Pirjo Komulainen; Wen-Jane Lee; Loic Le Marchand; Yi-Chieh Lin; Jaana Lindström; Oddgeir Lingaas-Holmen; Sabrina L. Mitchell; Jennifer G. Robinson; Fred Schumacher

Genome-wide association studies (GWAS) have identified ∼100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1×10−4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies.


The Journal of Clinical Endocrinology and Metabolism | 2010

Relation of Direct and Surrogate Measures of Insulin Resistance to Cardiovascular Risk Factors in Nondiabetic Finnish Offspring of Type 2 Diabetic Individuals

Carlos Lorenzo; Steven M. Haffner; Alena Stančáková; Markku Laakso

CONTEXT Methods to directly measure insulin resistance are invasive, complex, and costly. Surrogate indexes derived from the oral glucose tolerance test (OGTT) have been developed, but few studies have systematically analyzed these indexes. OBJECTIVE We examined the relation of surrogate and direct measures of insulin resistance to metabolic variables. DESIGN AND SETTING We conducted a cross-sectional analysis of the validation cohort of the Metabolic Syndrome in Men study. PARTICIPANTS Participants included 272 nondiabetic Finnish offspring of type 2 diabetic individuals (age, 24-50 yr; 55% female). INTERVENTION Surrogate indexes of insulin resistance were computed according to published formulas. Insulin sensitivity was also directly measured by the euglycemic-hyperinsulinemic clamp. RESULTS The strength of the correlation of the Matsuda index with directly measured insulin sensitivity (r = 0.77) was similar to that of Avignons insulin sensitivity index (r = 0.76; P = 0.581) and simple index assessing insulin sensitivity using OGTT measurements (r = 0.74; P = 0.060) and stronger than that of indexes derived from fasting measurements [e.g. fasting insulin (r = 0.72; P = 0.011) and homeostasis model assessment of insulin resistance (r = 0.71; P = 0.001)]. Surrogate indexes were similar to directly measured insulin sensitivity in their relationships with metabolic abnormalities including definitive measures of fat distribution. Some indexes, however, had distinctive correlations: McAuley index with lipoproteins and Avignon insulin sensitivity and Stumvoll indexes with adiposity and fibrinogen. CONCLUSIONS Surrogate indexes are valid measures of insulin resistance. Multiple sampling times during an OGTT may not be mandatory to adequately estimate insulin resistance in clinical and epidemiological studies.

Collaboration


Dive into the Alena Stančáková's collaboration.

Top Co-Authors

Avatar

Johanna Kuusisto

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Markku Laakso

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Markku Laakso

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis S. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jagadish Vangipurapu

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jussi Paananen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge