Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jussi Paananen is active.

Publication


Featured researches published by Jussi Paananen.


Diabetes | 2009

Association of 18 Confirmed Susceptibility Loci for Type 2 Diabetes With Indices of Insulin Release, Proinsulin Conversion, and Insulin Sensitivity in 5,327 Nondiabetic Finnish Men

Alena Stančáková; Teemu Kuulasmaa; Jussi Paananen; Anne U. Jackson; Lori L. Bonnycastle; Francis S. Collins; Michael Boehnke; Johanna Kuusisto; Markku Laakso

OBJECTIVE We investigated the effects of 18 confirmed type 2 diabetes risk single nucleotide polymorphisms (SNPs) on insulin sensitivity, insulin secretion, and conversion of proinsulin to insulin. RESEARCH DESIGN AND METHODS A total of 5,327 nondiabetic men (age 58 ± 7 years, BMI 27.0 ± 3.8 kg/m2) from a large population-based cohort were included. Oral glucose tolerance tests and genotyping of SNPs in or near PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, LOC387761, CDKN2B, IGF2BP2, CDKAL1, HNF1B, WFS1, JAZF1, CDC123, TSPAN8, THADA, ADAMTS9, NOTCH2, KCNQ1, and MTNR1B were performed. HNF1B rs757210 was excluded because of failure to achieve Hardy-Weinberg equilibrium. RESULTS Six SNPs (TCF7L2, SLC30A8, HHEX, CDKN2B, CDKAL1, and MTNR1B) were significantly (P < 6.9 × 10−4) and two SNPs (KCNJ11 and IGF2BP2) were nominally (P < 0.05) associated with early-phase insulin release (InsAUC0–30/GluAUC0–30), adjusted for age, BMI, and insulin sensitivity (Matsuda ISI). Combined effects of these eight SNPs reached −32% reduction in InsAUC0–30/GluAUC0–30 in carriers of ≥11 vs. ≤3 weighted risk alleles. Four SNPs (SLC30A8, HHEX, CDKAL1, and TCF7L2) were significantly or nominally associated with indexes of proinsulin conversion. Three SNPs (KCNJ11, HHEX, and TSPAN8) were nominally associated with Matsuda ISI (adjusted for age and BMI). The effect of HHEX on Matsuda ISI became significant after additional adjustment for InsAUC0–30/GluAUC0–30. Nine SNPs did not show any associations with examined traits. CONCLUSIONS Eight type 2 diabetes–related loci were significantly or nominally associated with impaired early-phase insulin release. Effects of SLC30A8, HHEX, CDKAL1, and TCF7L2 on insulin release could be partially explained by impaired proinsulin conversion. HHEX might influence both insulin release and insulin sensitivity.


Diabetes | 2012

Hyperglycemia and a Common Variant of GCKR Are Associated With the Levels of Eight Amino Acids in 9,369 Finnish Men

Alena Stančáková; Mete Civelek; Niyas K. Saleem; Pasi Soininen; Antti J. Kangas; Henna Cederberg; Jussi Paananen; Jussi Pihlajamäki; Lori L. Bonnycastle; Mario A. Morken; Michael Boehnke; Päivi Pajukanta; Aldons J. Lusis; Francis S. Collins; Johanna Kuusisto; Mika Ala-Korpela; Markku Laakso

We investigated the association of glycemia and 43 genetic risk variants for hyperglycemia/type 2 diabetes with amino acid levels in the population-based Metabolic Syndrome in Men (METSIM) Study, including 9,369 nondiabetic or newly diagnosed type 2 diabetic Finnish men. Plasma levels of eight amino acids were measured with proton nuclear magnetic resonance spectroscopy. Increasing fasting and 2-h plasma glucose levels were associated with increasing levels of several amino acids and decreasing levels of histidine and glutamine. Alanine, leucine, isoleucine, tyrosine, and glutamine predicted incident type 2 diabetes in a 4.7-year follow-up of the METSIM Study, and their effects were largely mediated by insulin resistance (except for glutamine). We also found significant correlations between insulin sensitivity (Matsuda insulin sensitivity index) and mRNA expression of genes regulating amino acid degradation in 200 subcutaneous adipose tissue samples. Only 1 of 43 risk single nucleotide polymorphisms for type 2 diabetes or hyperglycemia, the glucose-increasing major C allele of rs780094 of GCKR, was significantly associated with decreased levels of alanine and isoleucine and elevated levels of glutamine. In conclusion, the levels of branched-chain, aromatic amino acids and alanine increased and the levels of glutamine and histidine decreased with increasing glycemia, reflecting, at least in part, insulin resistance. Only one single nucleotide polymorphism regulating hyperglycemia was significantly associated with amino acid levels.


Journal of Internal Medicine | 2013

Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome – a randomized study (SYSDIET)

Matti Uusitupa; Kjeld Hermansen; Markku J. Savolainen; Ursula Schwab; Marjukka Kolehmainen; Lea Brader; Lene S. Mortensen; Lieselotte Cloetens; Anna Johansson-Persson; Gunilla Önning; Mona Landin-Olsson; Karl-Heinz Herzig; Janne Hukkanen; Fredrik Rosqvist; David Iggman; Jussi Paananen; Kari Pulkki; M. Siloaho; Lars O. Dragsted; Thaer Barri; Kim Overvad; K. E. Bach Knudsen; Mette Skou Hedemann; Peter Arner; Ingrid Dahlman; Grethe Iren A. Borge; P. Baardseth; Stine M. Ulven; Ingibjorg Gunnarsdottir; Svandis Jonsdottir

Different healthy food patterns may modify cardiometabolic risk. We investigated the effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile, blood pressure and inflammatory markers in people with metabolic syndrome.


Diabetes | 2013

Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes

Hanieh Yaghootkar; Claudia Lamina; Robert A. Scott; Zari Dastani; Marie-France Hivert; Liling Warren; Alena Stančáková; Sarah G. Buxbaum; Leo-Pekka Lyytikäinen; Peter Henneman; Ying Wu; Chloe Y.Y. Cheung; James S. Pankow; Anne U. Jackson; Stefan Gustafsson; Jing Hua Zhao; Christie M. Ballantyne; Weijia Xie; Richard N. Bergman; Michael Boehnke; Fatiha el Bouazzaoui; Francis S. Collins; Sandra H. Dunn; Josée Dupuis; Nita G. Forouhi; Christopher J Gillson; Andrew T. Hattersley; Jaeyoung Hong; Mika Kähönen; Johanna Kuusisto

Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics–based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26–0.35) increase in fasting insulin, a 0.34-SD (0.30–0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47–2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI −0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (−0.20 SD; 95% CI −0.38 to −0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75–1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: −0.03 SD; 95% CI −0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95–1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.


PLOS ONE | 2011

Whole Grain Products, Fish and Bilberries Alter Glucose and Lipid Metabolism in a Randomized, Controlled Trial: The Sysdimet Study

Maria Lankinen; Ursula Schwab; Marjukka Kolehmainen; Jussi Paananen; Kaisa Poutanen; Hannu Mykkänen; Tuulikki Seppänen-Laakso; Helena Gylling; Matti Uusitupa; Matej Orešič

Background Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism. Methodology/Principal Findings Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1) whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group), (2) Whole grain enriched diet (WGED) group, which includes principally the same grain products as group (1), but with no change in fish or berry consumption, and (3) refined wheat breads (Control). Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3) long-chain PUFAs increased (False Discovery Rate p-values <0.05). Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3) PUFA. Conclusions/Significance The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a beneficial effect in the efforts to prevent type 2 diabetes in high risk persons. Trial Registration ClinicalTrials.gov NCT00573781


Diabetes | 2011

Effects of 34 Risk Loci for Type 2 Diabetes or Hyperglycemia on Lipoprotein Subclasses and Their Composition in 6,580 Nondiabetic Finnish Men

Alena Stančáková; Jussi Paananen; Pasi Soininen; Antti J. Kangas; Lori L. Bonnycastle; Mario A. Morken; Francis S. Collins; Anne U. Jackson; Michael Boehnke; Johanna Kuusisto; Mika Ala-Korpela; Markku Laakso

OBJECTIVE We investigated the effects of 34 genetic risk variants for hyperglycemia/type 2 diabetes on lipoprotein subclasses and particle composition in a large population-based cohort. RESEARCH DESIGN AND METHODS The study included 6,580 nondiabetic Finnish men from the population-based Metabolic Syndrome in Men (METSIM) study (aged 57 ± 7 years; BMI 26.8 ± 3.7 kg/m2). Genotyping of 34 single nucleotide polymorphism (SNPs) for hyperglycemia/type 2 diabetes was performed. Proton nuclear magnetic resonance spectroscopy was used to measure particle concentrations of 14 lipoprotein subclasses and their composition in native serum samples. RESULTS The glucose-increasing allele of rs780094 in GCKR was significantly associated with low concentrations of VLDL particles (independently of their size) and small LDL and was nominally associated with low concentrations of intermediate-density lipoprotein, all LDL subclasses, and high concentrations of very large and large HDL particles. The glucose-increasing allele of rs174550 in FADS1 was significantly associated with high concentrations of very large and large HDL particles and nominally associated with low concentrations of all VLDL particles. SNPs rs10923931 in NOTCH2 and rs757210 in HNF1B genes showed nominal or significant associations with several lipoprotein traits. The genetic risk score of 34 SNPs was not associated with any of the lipoprotein subclasses. CONCLUSIONS Four of the 34 risk loci for type 2 diabetes or hyperglycemia (GCKR, FADS1, NOTCH2, and HNF1B) were significantly associated with lipoprotein traits. A GCKR variant predominantly affected the concentration of VLDL, and the FADS1 variant affected very large and large HDL particles. Only a limited number of risk loci for hyperglycemia/type 2 diabetes significantly affect lipoprotein metabolism.


Journal of Nutrition | 2015

Nontargeted Metabolite Profiling Discriminates Diet-Specific Biomarkers for Consumption of Whole Grains, Fatty Fish, and Bilberries in a Randomized Controlled Trial

Kati Hanhineva; Maria Lankinen; Anna Pedret; Ursula Schwab; Marjukka Kolehmainen; Jussi Paananen; Vanessa D. de Mello; Rosa Solà; Marko Lehtonen; Kaisa Poutanen; Matti Uusitupa; Hannu Mykkänen

BACKGROUND Nontargeted metabolite profiling allows for concomitant examination of a wide range of metabolite species, elucidating the metabolic alterations caused by dietary interventions. OBJECTIVE The aim of the current study was to investigate the effects of dietary modifications on the basis of increasing consumption of whole grains, fatty fish, and bilberries on plasma metabolite profiles to identify applicable biomarkers for dietary intake and endogenous metabolism. METHODS Metabolite profiling analysis was performed on fasting plasma samples collected in a 12-wk parallel-group intervention with 106 participants with features of metabolic syndrome who were randomly assigned to 3 dietary interventions: 1) whole-grain products, fatty fish, and bilberries [healthy diet (HD)]; 2) a whole-grain-enriched diet with the same grain products as in the HD intervention but with no change in fish or berry consumption; and 3) refined-wheat breads and restrictions on fish and berries (control diet). In addition, correlation analyses were conducted with the food intake data to define the food items correlating with the biomarker candidates. RESULTS Nontargeted metabolite profiling showed marked differences in fasting plasma after the intervention diets compared with the control diet. In both intervention groups, a significant increase was observed in 2 signals identified as glucuronidated alk(en)-ylresorcinols [corrected P value (Pcorr) < 0.05], which correlated strongly with the intake of whole-grain products (r = 0.63, P < 0.001). In addition, the HD intervention increased the signals for furan fatty acids [3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF)], hippuric acid, and various lipid species incorporating polyunsaturated fatty acids (Pcorr < 0.05). In particular, plasma CMPF correlated strongly with the intake of fish (r = 0.47, P < 0.001) but not with intakes of any other foods. CONCLUSIONS Novel biomarkers of the intake of health-beneficial food items included in the Nordic diet were identified by the metabolite profiling of fasting plasma and confirmed by the correlation analyses with dietary records. The one with the most potential was CMPF, which was shown to be a highly specific biomarker for fatty fish intake. This trial was registered at clinicaltrials.gov as NCT00573781.


British Journal of Nutrition | 2012

Association of the fat mass and obesity-associated (FTO) gene variant (rs9939609) with dietary intake in the Finnish Diabetes Prevention Study

Tiina Lappalainen; Jaana Lindström; Jussi Paananen; Johan G. Eriksson; Leila Karhunen; Jaakko Tuomilehto; Matti Uusitupa

A cluster of variants in the fat mass and obesity-associated (FTO) gene are associated with the common form of obesity. Well-documented dietary data are required for identifying how the genetic risk can be modified by dietary factors. The objective of the present study was to investigate the associations between the FTO risk allele (rs9939609) and dietary intake, and to evaluate how dietary intake affects the association between FTO and BMI in the Finnish Diabetes Prevention Study during a mean follow-up of 3·2 years. A total of 479 (BMI >25 kg/m2) men and women were genotyped for rs9939609. The participants completed a 3 d food record at baseline and before every annual study visit. The average intakes at baseline and during the years 1, 2 and 3 were calculated. At baseline, the FTO variant rs9939609 was not associated with the mean values of total energy intake, macronutrients or fibre. At baseline, a higher BMI by the FTO risk genotype was detected especially in those who reported a diet high in fat with mean BMI of 30·6 (sd 4·1), 31·3 (sd 4·6) and 34·5 (sd 6·2) kg/m2 for TT, TA and AA carriers, respectively (P =0·005). Higher BMI was also observed in those who had a diet low in carbohydrates (P =0·028) and fibre (P =0·015). However, in the analyses adjusted for total energy intake, age and sex, significant interactions between FTO and dietary intakes were not found. These findings suggest that the association between the FTO genotype and obesity is influenced by the components of dietary intake, and the current dietary recommendations are particularly beneficial for those who are genetically susceptible for obesity.


Diabetes | 2013

Association of Ketone Body Levels With Hyperglycemia and Type 2 Diabetes in 9,398 Finnish Men

Yuvaraj Mahendran; Jagadish Vangipurapu; Henna Cederberg; Alena Stančáková; Jussi Pihlajamäki; Pasi Soininen; Antti J. Kangas; Jussi Paananen; Mete Civelek; Niyas K. Saleem; Päivi Pajukanta; Aldons J. Lusis; Lori L. Bonnycastle; Mario A. Morken; Francis S. Collins; Karen L. Mohlke; Michael Boehnke; Mika Ala-Korpela; Johanna Kuusisto; Markku Laakso

We investigated the association of the levels of ketone bodies (KBs) with hyperglycemia and with 62 genetic risk variants regulating glucose levels or type 2 diabetes in the population-based Metabolic Syndrome in Men (METSIM) study, including 9,398 Finnish men without diabetes or newly diagnosed type 2 diabetes. Increasing fasting and 2-h plasma glucose levels were associated with elevated levels of acetoacetate (AcAc) and β-hydroxybutyrate (BHB). AcAc and BHB predicted an increase in the glucose area under the curve in an oral glucose tolerance test, and AcAc predicted the conversion to type 2 diabetes in a 5-year follow-up of the METSIM cohort. Impaired insulin secretion, but not insulin resistance, explained these findings. Of the 62 single nucleotide polymorphisms associated with the risk of type 2 diabetes or hyperglycemia, the glucose-increasing C allele of GCKR significantly associated with elevated levels of fasting BHB levels. Adipose tissue mRNA expression levels of genes involved in ketolysis were significantly associated with insulin sensitivity (Matsuda index). In conclusion, high levels of KBs predicted subsequent worsening of hyperglycemia, and a common variant of GCKR was significantly associated with BHB levels.


Diabetes | 2013

Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes.

Weijia Xie; Andrew R. Wood; Valeriya Lyssenko; Michael N. Weedon; Joshua W. Knowles; Sami Alkayyali; Themistocles L. Assimes; Thomas Quertermous; Fahim Abbasi; Jussi Paananen; Hans Häring; Torben Hansen; Oluf Pedersen; Ulf Smith; Markku Laakso; Jacqueline M. Dekker; John J. Nolan; Leif Groop; Ele Ferrannini; Klaus-Peter Adam; Walter Gall; Timothy M. Frayling; M. Walker

Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity–related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites—glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)—and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits.

Collaboration


Dive into the Jussi Paananen's collaboration.

Top Co-Authors

Avatar

Matti Uusitupa

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Johanna Kuusisto

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Ursula Schwab

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Kaisa Poutanen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Marjukka Kolehmainen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Alena Stančáková

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Markku Laakso

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Jussi Pihlajamäki

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikko Hiltunen

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge