Alenka Guček
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alenka Guček.
Nature Protocols | 2013
Boštjan Rituper; Alenka Guček; Jernej Jorgačevski; Ajda Flašker; Marko Kreft; Robert Zorec
In order to understand exocytosis and endocytosis, it is necessary to study these processes directly. An elegant way to do this is by measuring plasma membrane capacitance (Cm), a parameter proportional to cell surface area, the fluctuations of which are due to fusion and fission of secretory and other vesicles. Here we describe protocols that enable high-resolution Cm measurements in macroscopic and microscopic modes. Macroscopic mode, performed in whole-cell configuration, is used for measuring bulk Cm changes in the entire membrane area, and it enables the introduction of exocytosis stimulators or inhibitors into the cytosol through the patch pipette. Microscopic mode, performed in cell-attached configuration, enables measurements of Cm with attofarad resolution and allows characterization of fusion pore properties. Although we usually apply these protocols to primary pituitary cells and astrocytes, they can be adapted and used for other cell types. After initial hardware setup and culture preparation, several Cm measurements can be performed daily.
Cell Calcium | 2012
Boštjan Rituper; Ajda Flašker; Alenka Guček; Helena H. Chowdhury; Robert Zorec
Since the 1970s, much effort was been expended researching mechanisms of regulated exocytosis. Early work focused mainly on the role of proteins. Most notably the discovery of SNARE proteins in the 1980s and the zippering hypothesis brought us much closer to understanding the complex interactions in membrane fusion between vesicle and plasma membranes, a pivotal component of regulated exocytosis. However, most likely due to the predictions of the Singer-Nicholson fluid mosaic membrane model, the lipid components of the exocytotic machinery remained largely overlooked. Lipids were considered passive constituents of cellular membranes, not contributing much, if anything, to the process of exocytosis and membrane fusion. Since the 1990s, this so-called proteocentric view has been gradually giving way to the new perspective best described with the term proteolipidic. Many lipids were found to be of great importance in the regulation of exocytosis. Here we highlight the role of cholesterol. Furthermore, by using high-resolution cell-attached membrane capacitance measurements, we have monitored unitary exocytotic events in cholesterol-depleted membranes. We show that the frequency of these events is attenuated, providing evidence at the single vesicle level that cholesterol directly influences the merger of the vesicle and the plasma membranes.
Cellular and Molecular Life Sciences | 2016
Alenka Guček; Jernej Jorgačevski; Priyanka Singh; Claudia Geisler; Marjeta Lisjak; Nina Vardjan; Marko Kreft; Alexander Egner; Robert Zorec
Key support for vesicle-based release of gliotransmitters comes from studies of transgenic mice with astrocyte-specific expression of a dominant-negative domain of synaptobrevin 2 protein (dnSNARE). To determine how this peptide affects exocytosis, we used super-resolution stimulated emission depletion microscopy and structured illumination microscopy to study the anatomy of single vesicles in astrocytes. Smaller vesicles contained amino acid and peptidergic transmitters and larger vesicles contained ATP. Discrete increases in membrane capacitance, indicating single-vesicle fusion, revealed that astrocyte stimulation increases the frequency of predominantly transient fusion events in smaller vesicles, whereas larger vesicles transitioned to full fusion. To determine whether this reflects a lower density of SNARE proteins in larger vesicles, we treated astrocytes with botulinum neurotoxins D and E, which reduced exocytotic events of both vesicle types. dnSNARE peptide stabilized the fusion-pore diameter to narrow, release-unproductive diameters in both vesicle types, regardless of vesicle diameter.
The Journal of Neuroscience | 2014
Ana I. Calejo; Jernej Jorgačevski; Boštjan Rituper; Alenka Guček; Patrícia Pereira; Manuel A. S. Santos; Maja Potokar; Nina Vardjan; Marko Kreft; Paula P. Gonçalves; Robert Zorec
Hormone and neurotransmitter release from vesicles is mediated by regulated exocytosis, where an aqueous channel-like structure, termed a fusion pore, is formed. It was recently shown that second messenger cAMP modulates the fusion pore, but the detailed mechanisms remain elusive. In this study, we asked whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are activated by cAMP, are involved in the regulation of unitary exocytic events. By using the Western blot technique, a real-time PCR, immunocytochemistry in combination with confocal microscopy, and voltage-clamp measurements of hyperpolarizing currents, we show that HCN channels are present in the plasma membrane and in the membrane of secretory vesicles of isolated rat lactotrophs. Single vesicle membrane capacitance measurements of lactotrophs, where HCN channels were either augmented by transfection or blocked with an HCN channel blocker (ZD7288), show modulated fusion pore properties. We suggest that the changes in local cation concentration, mediated through HCN channels, which are located on or near secretory vesicles, have an important role in modulating exocytosis.
Journal of Neuroscience Research | 2017
Jernej Jorgačevski; Maja Potokar; Marko Kreft; Alenka Guček; Jean-Pierre Mothet; Robert Zorec
Astrocytes are excitable neural cells that contribute to brain information processing via bidirectional communication with neurons. This involves the release of gliosignaling molecules that affect synapses patterning and activity. Mechanisms mediating the release of these molecules likely consist of non‐vesicular and vesicular‐based mechanisms. It is the vesicle‐based regulated exocytosis that is an evolutionary more complex process. It is well established that the release of gliosignaling molecules has profound effects on information processing in different brain regions (e.g., hippocampal astrocytes contribute to long‐term potentiation [LTP]), which has traditionally been considered as one of the cellular mechanisms underlying learning and memory. However, the paradigm of vesicle‐based regulated release of gliosignaling molecules from astrocytes is still far from being unanimously accepted. One of the most important questions is to what extent can the conclusions obtained from cultured astrocytes be translated to in vivo conditions. Here, we overview the properties of vesicle mobility and their fusion with the plasma membrane in cultured astrocytes and compare these parameters to those recorded in astrocytes from acute brain hippocampal slices. The results from both experimental models are similar, which validates experiments on isolated astrocytes and further supports arguments in favor of in vivo vesicle‐based exocytotic release of gliosignaling molecules.
Channels | 2015
Alenka Guček; Jernej Jorgačevski; Urszula Górska; Boštjan Rituper; Marko Kreft; Robert Zorec
In regulated exocytosis vesicular and plasma membranes merge to form a fusion pore in response to stimulation. The nonselective cation HCN channels are involved in the regulation of unitary exocytotic events by at least 2 mechanisms. They can affect SNARE-dependent exocytotic activity indirectly, via the modulation of free intracellular calcium; and/or directly, by altering local cation concentration, which affects fusion pore geometry likely via electrostatic interactions. By monitoring membrane capacitance, we investigated how extracellular cation concentration affects fusion pore diameter in pituitary cells and astrocytes. At low extracellular divalent cation levels predominantly transient fusion events with widely open fusion pores were detected. However, fusion events with predominately narrow fusion pores were present at elevated levels of extracellular trivalent cations. These results show that electrostatic interactions likely help determine the stability of discrete fusion pore states by affecting fusion pore membrane composition.
Frontiers in Cellular Neuroscience | 2013
Doron Kabaso; Jernej Jorgačevski; Ana I. Calejo; Ajda Flašker; Alenka Guček; Marko Kreft; Robert Zorec
In regulated exocytosis the merger between the vesicle and the plasma membranes leads to the formation of an aqueous channel (a fusion-pore), through which vesicular secretions exit into the extracellular space. A fusion pore was thought to be a short-lived intermediate preceding full-fusion of the vesicle and the plasma membranes (full-fusion exocytosis). However, transient exocytic events were also observed, where the fusion-pore opens and closes, repetitively. Here we asked whether there are different discrete states of the open fusion-pore. Unitary exocytic events were recorded by the high-resolution cell-attached patch-clamp method in pituitary lactotrophs and brain astrocytes. We monitored reversible unitary exocytic events, characterized by an on-step, which is followed by an off-step in membrane capacitance (Cm), a parameter linearly related to the membrane area. The results revealed three categories of reversible exocytic events (transient fusion-pore openings), which do not end with the complete integration of the vesicle membrane into the plasma membrane. These were categorized according to the observed differences in the amplitude and sign of the change in the real (Re) parts of the admittance signals: in case I events (Re ≈ 0) fusion pores are relatively wide; in case II (Re > 0) and case III (Re < 0) events fusion pores are relatively narrow. We show that case III events are more likely to occur for small vesicles, whereas, case II events are more likely to occur for larger vesicles. Case III events were considerably more frequent in astrocytes than in lactotrophs.
Neurochemical Research | 2012
Alenka Guček; Nina Vardjan; Robert Zorec
Biophysical Journal | 2015
Alenka Guček; Jernej Jorgačevski; Priyanka Singh; Claudia Geisler; Nina Vardjan; Marko Kreft; Alexander Egner; Robert Zorec
Biophysical Journal | 2014
Jernej Jorgačevski; Nina Vardjan; Ana C. Calejo; Alenka Guček; Boštjan Rituper; Ajda Flašker; Marko Kreft; Robert Zorec